Product Data Sheet

Apogossypolone

Cat. No.: HY-19551

CAS No.: 886578-07-0

Molecular Formula: $C_{28}H_{26}O_8$ Molecular Weight: 490.5

Target: Apoptosis; Fungal; Bcl-2 Family; Autophagy; ROS Kinase

Pathway: Apoptosis; Anti-infection; Autophagy; Protein Tyrosine Kinase/RTK

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description Apogossypolone (ApoG2) is an orally active Bcl-2 family proteins inhibitor with K_i values of 35, 25 and 660 nM for Bcl-2, Mcl-1

and Bcl-X_L, respectively. Apogossypolone shows antitumor activities, induces cell apoptosis^[1] and autophagy^[2].

Apogossypolone also has antifungal activity^[3].

IC₅₀ & Target Mcl-1 Bcl-2 Bcl-xL

25 nM (Ki) 35 nM (Ki) 660 nM (Ki)

In Vitro Apogossypolone (ApoG2) shows improved stability under stressed conditions^[1].

Apogossypolone (0-1 μM, 72 or 96 h) inhibits WSU-DLCL₂ cells growth in a dose-dependent manner^[1].

Apogossypolone (0-5 μ M, 24 or 48 h) interferes with the formation of heterodimers between anti-apoptotic and proappototic Bcl-2 family members, and leads to cleavage of caspase-3, caspase-9 and PARP^[1].

Apogossypolone (0-8 μ M, 0-72 h) induces apoptotic WSU-DLCL₂ cell death in a time- and dose-dependent manner [1].

Apogossypolone (0-10 μM, 0-24 h) induces autophagy and promotes ROS generation in HCC cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[1]

Cell Line:	WSU-DLCL ₂
Concentration:	250, 350, 500 and 1000 nM
Incubation Time:	96 h for cell counting, 72 h for MTT
Result:	Inhibited growth in a dose-dependent manner. The 50% growth inhibition concentration (IC ₅₀) was approximately 350 nM.

Western Blot Analysis^[1]

Cell Line:	WSU-DLCL ₂
Concentration:	0.35, 0.5, 1 and 5 μM
Incubation Time:	24 or 48 h
Result:	Blocked the formation of heterodimers between Bcl- X_L and Bim in a concentration-dependent manner. Resulted in the activation of cleavages of caspase-3, caspase-9 and

	PARP.
Apoptosis Analysis ^[1]	
Cell Line:	WSU-DLCL ₂
Concentration:	0, 1, 2, 4 and 8 μM
Incubation Time:	24, 48 and 72 h
Result:	Induced cell apoptosis in a time- and dose-dependent manner.
Cell Autophagy Assay ^[2]	
Cell Line:	HepG2 and Hep3B
Concentration:	1.25, 2.5, 5 and 10 μM
Incubation Time:	6, 12, 18 and 24 h
Result:	Induced LC3 (Light chain 3)-II conversion in a dose- and time-dependent manner.

In Vivo

Apogossypolone (ApoG2) (120 mg/kg; i.v. or p.o.; once a day for 5 days) effectively inhibits growth of diffuse large cell lymphoma cells without toxicity $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Four-week-old female ICR-SCID mice, each mouse received 10 7 WSU-DLCL $_2$ cells (in serum-free RPMI 1640) subcutaneously (sc) in each flank area $^{[1]}$
Dosage:	120 mg/kg
Administration:	Intravenous or administration per day for five days
Result:	Inhibited the growth of WSU-DLCL ₂ and significantly decreased the tumor weight.
Animal Model:	Non-tumor-bearing SCID mice ^[1]
Dosage:	160 mg/kg
Administration:	Intravenous or administration per day for five days
Result:	Was well tolerated in mice up to 800 mg/kg. Displayed no gross signs of toxicity.

REFERENCES

- [1]. Yuan Sun, et al. Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. Cancer Biol Ther. 2008 Sep;7(9):1418-26.
- [2]. Jay E Mellon, et al. Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi. J Agric Food Chem. 2012 Mar 14;60(10):2740-5.
- [3]. Cheng P, et al. The novel BH-3 mimetic apogossypolone induces Beclin-1- and ROS-mediated autophagy in human hepatocellular carcinoma [corrected] cells. Cell Death Dis. 2013 Feb 7;4(2):e489.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com