Abemaciclib

Cat. No.:	HY-16297A
CAS No.:	1231929-97-7
Molecular Formula:	C ₂₇ H ₃₂ F ₂ N ₈
Molecular Weight:	507
Target:	CDK
Pathway:	Cell Cycle/DNA Damage
Storage:	4°C, protect from light * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

Preparing Stock Solutions	1 mM	1.9724 mL	9.8619 mL	19.7239 mL
	5 mM	0.3945 mL	1.9724 mL	3.9448 mL
	10 mM			
		5 mM 10 mM	5 mM 0.3945 mL	5 mM 0.3945 mL 1.9724 mL 10 mM

BIOLOGICAL ACTIVITY Description Abemaciclib (LY2835219) is a selective CDK4/6 inhibitor with IC₅₀ values of 2 nM and 10 nM for CDK4 and CDK6, respectively. Cdk4/cyclin D1 CDK6/cyclinD1 IC₅₀ & Target CDK9/cyclinT1 CDK5/p35 287 nM (IC₅₀) 2 nM (IC₅₀) 10 nM (IC₅₀) 57 nM (IC₅₀) Cdk5/p25 CDK2/cyclinE CDK1/cyclinB1 CDK7/Mat1/cyclinH1 355 nM (IC₅₀) 504 nM (IC₅₀) 1627 nM (IC₅₀) 3910 nM (IC₅₀) PIM1 PIM2 HIPK2 DYRK2 50 nM (IC₅₀) 3400 nM (IC₅₀) 31 nM (IC₅₀) 61 nM (IC₅₀) FLT3 (D835Y) CK2 GSK3b JNK3 192 nM (IC₅₀) 403 nM (IC₅₀) 117 nM (IC₅₀) 389 nM (IC₅₀)

	DRAK1 659 nM (IC ₅₀)	FLT3 3960 nM (IC ₅₀)			
In Vitro	Abemaciclib reduces cell viability with the IC ₅₀ values ranging from 0.5 μM to 0.7 μM, inhibits Akt and ERK signaling but not mTOR activation at head and neck squamous cell carcinoma (HNSCC) cells ^[1] . Abemaciclib shows inhibition on A375R1-4, M14R, and SH4R with EC ₅₀ values ranging from 0.3 to 0.6 μM; Abemaciclib inhibits the proliferation of the parental A375 and resistant A375RV1 and A375RV2 cells with similar potencies with IC ₅₀ values of 395, 260, and 463 nM, respectively ^[2] . Abemaciclib inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	. Abemaciclib (45 or 90 mg/kg	n combination with RAD001 causes a cooperative antitumor effect in HNSCC xenograft tumor ^[1] , p.o.) shows significant tumor growth inhibition in an A375 xenograft model ^[2] . onfirmed the accuracy of these methods. They are for reference only.			

PROTOCOL	
Cell Assay ^[1]	Cells are seeded in a 96-well plate, allowed to adhere overnight, and treated with DMSO control (0.1% v/v) or the indicate compounds for 72 h. Cell viability and proliferation are determined using a Cell Counting Kit according to the manufacturer's instructions. The interaction between Abemaciclib and mTOR inhibitor is determined using CompuSyn. Combination index (CI) values of 1 indicates and additive drug interaction, whereas a CI of <1 is synergistic and a CI of >1 antagonistic. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal Administration ^[1]	Six-week-old BALB/c female nude mice are injected subcutaneously with OSC-19 (1×10 ⁶) cells. When tumor sizes reach approximately 100 mm ³ , mice are randomized by tumor size and subjected to each treatment. At least 5 mice per treater group are included. Each group of mice is dosed via daily oral gavage with vehicle, Abemaciclib (45 mg/kg/d or 90 mg/kg RAD001 (5 mg/kg/d), or a combination of both. The Abemaciclib is dissolved in 1% HEC in 20 mM phosphate buffer (pH2 Tumor size and body weight are measured twice weekly. Tumor volumes are calculated using the following formula: V= ²)/2. Mice are gavaged a final time on day 14 and sacrificed the following day. The tumors are removed for Western blot immunohistochemistry. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nature. 2017 Aug 24;548(7668):471-475.
- Cell. 2023 Jun 8;186(12):2628-2643.e21.
- Cell. 2018 Nov 1;175(4):984-997.e24.
- Cancer Discov. 2023 Dec 4.
- Nature Cancer. 2021 Apr;2(4):429-443.

See more customer validations on <u>www.MedChemExpress.com</u>

REFERENCES

[1]. Ku BM, et al. The CDK4/6 inhibitor LY2835219 has potent activity in combination with mTOR inhibitor in head and neck squamous cell carcinoma. Oncotarget.?2016 Mar 22;7(12):14803-13.

[2]. Yadav V, et al. The CDK4/6 inhibitor LY2835219 overcomes PLX4032 resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther. 2014 Oct;13(10):2253-63.

[3]. Gelbert LM, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with NSC 613327. Invest New Drugs. 2014 Oct;32(5):825-37.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA