AG-825

MedChemExpress

Cat. No.:	HY-15844		
CAS No.:	149092-50-2		
Molecular Formula:	C ₁₉ H ₁₅ N ₃ O ₃ S ₂		
Molecular Weight:	397.47		
Target:	EGFR; Apopt	osis	
Pathway:	JAK/STAT Si	gnaling; F	Protein Tyrosine Kinase/RTK; Apoptosis
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

SOLVENT & SOLUBILITY

In Vitro	DMSO : 250 mg/mL (6	228.98 mM; Need ultrasonic) Solvent Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	2.5159 mL	12.5796 mL	25.1591 mL		
		5 mM	0.5032 mL	2.5159 mL	5.0318 mL		
		10 mM	0.2516 mL	1.2580 mL	2.5159 mL		
	Please refer to the solubility information to select the appropriate solvent.						
In Vivo	1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.23 mM); Clear solution						

BIOLOGICAL ACTIV	ΙΤΥ					
Description	AC 935					
Description AG-825 (Tyrphostin AG-825) is a selective and ATP-competitive ErbB2 inhibitor which suppresses tyro with an $I_{\rm C}$ of 0.25 μ M. AG-825 displays anti-sancer activity [1][2][3] AG-825 cignificantly accelerates as						
	(14) (25) (16) (25) (16) (25) (16) (25) (16) (26)					
	incut opinio i					
IC ₅₀ & Target	ErbB2					
	0.35 μM (IC ₅₀)					

REFERENCES

[1]. Wolfson E, et al. Nucleolin and ErbB2 inhibition reduces tumorigenicity of ErbB2-positive breast cancer. Cell Death Dis. 2018 Jan 19;9(2):47.

-NH₂

Product Data Sheet

HC

[2]. He H, et al. Signal therapy for RAS-induced cancers in combination of AG 879 and PP1, specific inhibitors for ErbB2 and Src family kinases, that block PAK activation. Cancer J. 2001 May-Jun;7(3):191-202.

[3]. Ling J, et al. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis. Medicine (Baltimore). 2018 Jun;97(22):e10775.

[4]. Rahman A, et al. Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. Elife. 2019 Oct 15;8. pii: e50990.

[5]. Gazit A, et al. Tyrphostins. 3. Structure-activity relationship studies of alpha-substituted benzylidenemalononitrile 5-S-aryltyrphostins. J Med Chem. 1993 Nov 12;36(23):3556-64.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA