

AB-MECA

Cat. No.: HY-19365 CAS No.: 152918-26-8 Molecular Formula: $\mathsf{C}_{18}\mathsf{H}_{21}\mathsf{N}_7\mathsf{O}_4$ Molecular Weight: 399.4

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

> 4°C 2 years In solvent -80°C 2 years

> > -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 55 mg/mL (137.71 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5038 mL	12.5188 mL	25.0376 mL
	5 mM	0.5008 mL	2.5038 mL	5.0075 mL
	10 mM	0.2504 mL	1.2519 mL	2.5038 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.75 mg/mL (6.89 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.75 mg/mL (6.89 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.75 mg/mL (6.89 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	AB-MECA is a high affinity A_3 adenosine receptor agonist with a binding K_i of 430.5 nM for human A_3 receptors in CHO cells. AB-MECA can enhance plasma histamine level ^{[1][2][3][4]} .	
IC ₅₀ & Target	Adenosine A ₃ receptor	
In Vitro	AB-MECA (1, 10, 100 μ M; 24 hours) shows dose-dependent cytotoxicity in human lung cancer cell line A549 ^[2] . [1251]AB-MECA has K _D values for binding to A ₃ receptors in transfected CHO cells and in RBL-2H3 cells are 1.48 and 3.61 nM,	

roc	pectiv	أبدام	3
162	pecuv	rely.	٠.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[2]

Cell Line:	A549 cell	
Concentration:	1, 10, 100 μΜ	
Incubation Time:	24 hours	
Result:	Shown dose-dependent cytotoxicity.	

In Vivo

AB-MECA (3 ug/kg; iv) enhances plasma histamine level in mouse^[4].

AB-MECA (0.3 mg/kg; iv) enhances antigen-induced bronchoconstriction in male albino guinea pigs, weighing 180-220 $g^{[5]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Balb/c mice, weighing 18-25 g ^[4]	
Dosage:	3 ug/kg	
Administration:	IV; single dose	
Result:	Induced a 5.9-fold increase in histamine levels in murine plasma.	

REFERENCES

- [1]. Solanki, N. D., et al. In Vitro Evaluation Of Anti-Cancer Potential Of A3 Adenosine Receptor Agonist On A549 Human Lung Cancer Cell Line. Int J Pharm Pharm Sci; 2019 Jun; 11(6): 106-108.
- [2]. X D Ji, et al. A selective agonist affinity label for A3 adenosine receptors. Biochem Biophys Res Commun. 1994 Aug 30;203(1):570-6.
- [3]. Endre G Mikus, et al. Interaction of SSR161421, a novel specific adenosine A(3) receptor antagonist with adenosine A(3) receptor agonists both in vitro and in vivo. Eur J Pharmacol. 2013 Jan 15;699(1-3):62-6.
- [4]. Endre G Mikus, et al. Evaluation of SSR161421, a novel orally active adenosine A3 receptor antagonist on pharmacology models. Eur J Pharmacol. 2013 Jan 15;699(1-3):172-9.
- [5]. L Yates, et al. Radioligand binding and functional responses of ligands for human recombinant adenosine A(3) receptors. Auton Autacoid Pharmacol. 2006 Apr;26(2):191-200.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA