Product Data Sheet

A 438079

Cat. No.: HY-15488 CAS No.: 899507-36-9 Molecular Formula: C13H9Cl2N5 Molecular Weight: 306.15

Target: P2X Receptor

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO: 100 mg/mL (326.64 mM; Need ultrasonic)

H₂O: 0.2 mg/mL (0.65 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2664 mL	16.3319 mL	32.6637 mL
	5 mM	0.6533 mL	3.2664 mL	6.5327 mL
	10 mM	0.3266 mL	1.6332 mL	3.2664 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)

Solubility: ≥ 2.5 mg/mL (8.17 mM); Clear solution

2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.17 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	A 438079 is a potent, and selective P2X ₇ receptor antagonist with pIC ₅₀ of 6.9.	
IC ₅₀ & Target	pIC50: 6.9 (P2X ₇ receptor)	
In Vitro	In 1321N1 cells stably expressing rat P2X $_7$ receptors, A 438079 blocks BzATP-(10 μ M) evoked changes in intracellular calcium concentrations with an IC $_{50}$ of 321 nM. A 438079 is also selective for the P2X $_7$ receptor, at concentrations up to 100 μ M $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	A 438079 (80 μmol/kg, i.v.) reduces noxious and innocuous evoked activity of different classes of spinal neurons in	

neuropathic rats. A 438079 (100 and 300 μ mol/kg, i.p.) significantly raises withdrawal thresh-olds in both the SNL and CCI models^[1]. Intraperitoneal injection of A 438079 (5 and 15 mg/kg) 60 min after triggering seizures reduces seizure severity and neuronal death within the hippocampus. A 438079 has superior neuroprotective effects compared with an equally dose of phenobarbital (25 mg/kg)^[2]. A 438079 partially but significantly prevents the 6-OHDA-induced depletion of striatal DA stores^[3]. Pretreatment with A 438079 reduces nociceptive behaviour scores in the HC model^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Human astrocytoma cells, 1321N1, are grown to stably express rat P2X₇, human P2X4, P2X2a, P2X2/3, P2X1, P2Y1 and P2Y2 recombinant receptors. Agonist, BzATP, 2,3-O-(4-ben-zoylbenzoyl)-ATP or ATP-induced changes in intracellular Ca^{2+} concentrations are assessed in all of the cell lines using the Ca^{2+} chelating dye, Fluo-4, in conjunction with a Fluorometric Imaging Plate Reader. The cells are plated out the day before the experiment onto poly-D-lysine-coated black 96 well plates. After the agonist addition, changes in intracellular Ca^{2+} concentrations are recorded, per second, for 3 min. Ligands are tested at 11 half-log concentrations from 10^{-10} to 10^{-4} M. BzATP or ATP concentrations corresponds to the EC_{70} values for each receptor to enable comparison of antagonist potencies across the multiple P2 receptor subtypes. A 438079 is added to the cell plate and fluorescence data are collected for 3 min before the addition of agonist, subsequently, data are then collected for another 2 min. The pEC_{50} or pIC_{50} values are derived from a single curve fit.

Animal
Administration [2]

To confirm A 438079 reach the brain after systemic administration, P10 rat pups are injected with 5 mg/kg A 438079 and killed either 10 min, 30 min, or 2 h later (n=4 per group). Blood samples are centrifuged at $1000 \times g$ for 10 min to isolate the plasma. Samples are analyzed using liquid chromatography-mass spectrometry (LC-MS/MS) by a service provider. Briefly, protein is precipitated from 50 μ L aliquots of the individual plasma or brain tissue homogenate, and A 438079 is quantified by LC-MS/MS from a five-point standard curve.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Brain, Behavior, and Immunity. 2020 Aug;88:507-514.
- Cancer Immunol Res. 2020 Nov;8(11):1426-1439.
- Neural Regen Res. 2021 Aug;16(8):1582-1591.
- Int J Mol Sci. 2022 May 17;23(10):5586.
- Front Mol Neurosci. 2018 Nov 6;11:401.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. McGaraughty S, et al. P2X7-related modulation of pathological nociception in rats. Neuroscience. 2007 Jun 8;146(4):1817-28.
- [2]. Mesuret G, et al. CNS Neurosci Ther. 2014 Jun;20(6):556-64.
- [3]. Marcellino D, et al. On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X(7) receptor antagonist A-438079. J Neural Transm (Vienna). 2010 Jun;117(6):681-7.
- [4]. Martins JP, et al. The role of P2X7 purinergic receptors in inflammatory and nociceptive changes accompanying cyclophosphamide-induced haemorrhagic cystitis in mice. Br J Pharmacol. 2012 Jan;165(1):183-96.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com