Product Data Sheet

Trelagliptin

Cat. No.: HY-15408 CAS No.: 865759-25-7 Molecular Formula: C₁₈H₂₀FN₅O₂

Molecular Weight: 357.38

Target: Dipeptidyl Peptidase

Pathway: Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

> 4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 50 \text{ mg/mL} (139.91 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7981 mL	13.9907 mL	27.9814 mL
	5 mM	0.5596 mL	2.7981 mL	5.5963 mL
	10 mM	0.2798 mL	1.3991 mL	2.7981 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (7.00 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (7.00 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.00 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Trelagliptin (SYR-472) is a potent, orally active and highly selective DPP-4 inhibitor with an IC ₅₀ of 4 nM. Trelagliptin succinate improves glycemic control in vivo and can be used for the study of type 2 diabetes mellitus (T2DM) ^[1] .
IC ₅₀ & Target	IC50: 4 nM (DPP-4) ^[1]
In Vitro	Dipeptidyl peptidase-4 (DPP-4) is one of the widely explored novel targets for type 2 diabetes mellitus (T2DM) strategy to

Page 1 of 2

preserve the endogenous glucagon like peptide (GLP)-1 activity by inhibiting the DPP-4 action^[1].

Trelagliptin exhibits potent inhibitory activity toward DPP-4 prepared from Caco-2 cells with an IC $_{50}$ value of 5.4 nM. Trelagliptin also inhibits human, dog, and rat plasma DPP-4 activity with IC $_{50}$ values of 4.2 nM, 6.2 nM, and 9.7 nM, respectively^[2].

Trelagliptin is highly selective for DPP-4 and displays IC_{50} values >100,000 nM corresponding to >10,000-fold selectivity over DPP-2, DPP-8, DPP-9, PEP and FAP α activities. Trelagliptin shows DPP4 selective about 4- and 12-fold more potent than alogliptin (HY-A0023) and sitagliptin (HY-13749), respectively^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Trelagliptin (oral gavage; 7 mg/kg; single dose) shows sustained PD effect in dogs and gives >80% inhibition of DPP-4 activity even after 24h^[1].

Trelagliptin (oral gavage; 3 mg/kg; single dose; 60 min prior to oral glucose) significantly improves the glucose tolerance capacity by decreasing the $AUC_{0-120min}$ of 19.3% compared with the vehicle group in ob/ob mice^[3].

Trelagliptin (oral gavage; 10 mg/kg; once a week; 8 weeks) caused significant reductions in fasting blood glucose (FBG) levels, and the average reduction during the entire treatment period is 16.8% compared to the control.It also increases insulin level and raised it by 1.7-foldin AUC_{0-120min} in ob/ob mice^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	ICR ob/ob mice ^[3]	
Dosage:	10 mg/kg	
Administration:	Oral gavage; 10 mg/kg; once a week; 8 weeks	
Result:	Exerted chronic antidiabetic effects on type 2 diabetic db/db Mice.	

REFERENCES

- [1]. Bhumika D Patel, et al. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur J Med Chem. 2014 Mar 3;74:574-605.
- [2]. Charles E Grimshaw, et al. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism. PLoS One. 2016 Jun 21;11(6):e0157509.
- [3]. Shiliang Li, et al. Discovery of a Natural-Product-Derived Preclinical Candidate for Once-Weekly Treatment of Type 2 Diabetes. J Med Chem. 2019 Mar 14;62(5):2348-2361.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA