Proteins

(S)-Selisistat

Cat. No.: HY-15452A CAS No.: 848193-68-0 Molecular Formula: $C_{13}H_{13}CIN_2O$ Molecular Weight: 248.71 Target: Sirtuin

Pathway: Cell Cycle/DNA Damage; Epigenetics

Storage: Powder

3 years 2 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (402.07 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.0207 mL	20.1037 mL	40.2075 mL
	5 mM	0.8041 mL	4.0207 mL	8.0415 mL
	10 mM	0.4021 mL	2.0104 mL	4.0207 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (10.05 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (10.05 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (10.05 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	(S)-Selisistat ((S)-EX-527) is a potent and selective SIRT1 inhibitor, with an IC_{50} of 98 nM.	
IC ₅₀ & Target	SIRT1 98 nM (IC ₅₀)	
In Vitro	(S)-Selisistat is an inhibitor of SIRT1 enzymatic activity (IC ₅₀ , 98 nM), identified in a high-throughput screen using bacterially	

	expressed human SIRT1. (S)-Selisistat inhibits SIRT1 in a concentration-dependent manner with an IC $_{50}$ of 38 nM, in agreement with the activity on bacterially expressed SIRT1. (S)-Selisistat has much lower potency against SIRT2 (IC $_{50}$, 19.6 μ M) or SIRT3 (IC $_{50}$, 48.7 μ M) but does not inhibit class I/II HDAC activity at concentrations up to 100 μ M ^[1] . (S)-Selisistat exerts an inhibitory effect on SIRT1 activity without affecting SIRT1 expression on both mRNA and protein levels ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	(S)-Selisistat abolishes Resveratrol (RSV)-induced attenuation of microvascular inflammation in ob/ob septic mice. Finally, ob/ob mice in Sepsis+RSV group has significantly increased 7-day survival vs. Sepsis+Vehicle group ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Napper AD, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005 Dec 15;48(25):8045-54.
- [2]. Solomon JM, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006 Jan;26(1):28-38.
- [3]. Jia Y, et al. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264.7 cells. PLoS One. 2015 Mar 20;10(3):e0120849.
- [4]. Wang X, et al. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring). 2015 Jun;23(6):1209-17.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA