

Product Data Sheet

JTV-519 hemifumarate

Cat. No.: HY-15293B **CAS No.:** 1435938-25-2

Molecular Weight: 482.64

Target: Calcium Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (207.19 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.0719 mL	10.3597 mL	20.7194 mL
Stock Solutions	5 mM	0.4144 mL	2.0719 mL	4.1439 mL
	10 mM	0.2072 mL	1.0360 mL	2.0719 mL

Please refer to the solubility information to select the appropriate solvent.

BIOL	α CI	~ 1	ACTI	MTV
вил	10/61	LAI	$\Delta U = I$	$\mathbf{v} - \mathbf{v}$

Description		1 hemifumarate) is a Ca^{2+} -dependent blocker of sarcoplasmic reticulum Ca^{2+} -stimulated ATPase st of ryanodine receptors in striated muscle. Antiarrhythmic and cardioprotective properties [1][2].
In Vitro	dependent manner. In the p	and Ca ²⁺ movement into large unilamellar vesicles (LUV) caused by annexin V in a dose- presence of 50 nM annexin V and 400 μ M Ca ²⁺ , 3 μ M JTV-519 shows significant inhibition of Ca ²⁺ V, and 50% inhibition is achieved at 25 μ M K201 ^[2] . confirmed the accuracy of these methods. They are for reference only.
In Vivo	and ejection fraction (EF) are	h before the surgery) improves cardiac function in CLP mice, where the fractional shortening (FS) e significantly increased as compared with CLP mice without JTV-519 treatment ^[3] . confirmed the accuracy of these methods. They are for reference only. Wild type male C57BL/6 mice weighing 18-22g with polymicrobial sepsis produced by cecal ligation and puncture (CLP) ^[3]

Dosage:	0.5 mg/kg/h
Administration:	Applied intraperitoneally 2 h before the surgery
Result:	Improved cardiac function, where the EF and FS were significantly increased

REFERENCES

- [1]. Darcy YL, et al. K201 (JTV519) is a Ca²⁺-Dependent Blocker of SERCA and a Partial Agonist of Ryanodine Receptors in Striated Muscle. Mol Pharmacol. 2016 Aug;90(2):106-15.
- [2]. Kaneko N, et al. Inhibition of annexin V-dependent Ca2+ movement in large unilamellar vesicles by K201, a new 1,4-benzothiazepine derivative. Biochim Biophys Acta. 1997 Nov 13;1330(1):1-7.
- [3]. Yang J, et al. Toll-like receptor 4-induced ryanodine receptor 2 oxidation and sarcoplasmic reticulum Ca²⁺ leakage promote cardiac contractile dysfunction in sepsis. J Biol Chem. 2018 Jan 19;293(3):794-807.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA