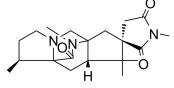
Screening Libraries


(rel)-Asperparaline A

Cat. No.: HY-124874 CAS No.: 195966-93-9 Molecular Formula: $C_{20}H_{29}N_3O_3$ Molecular Weight: 359.46 Target: nAChR

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Product Data Sheet

Rotation (-)

DIC	10	CIC	A I A	CTIV	ZITV
ВΙ	JLU	GIC	ALA	CT۱۱	\prime I I Y

Description	(rel)-Asperparaline A ((rel)-Aspergillimide), an anthelmintic metabolite, is isolated from okara that has been fermented with Aspergillus japonicas JV-23. (rel)-Asperparaline A is also a potent and selective antagonist of nAChR. (rel)-Asperparaline A exhibits paralytic activity in silk worms ^{[1][2]} .
In Vitro	Asperparaline A (1 μ M; 1 min) markedly and reversibly blocks the acetylcholine (Ach; 10 μ M)-induced current in the silkworm larval neurons ^[2] . Asperparaline A (1-1000 nM; 1 min) differentially blocks the peak and slowly desensitizing currents, with IC ₅₀ s of 20.2 and 39.6 nM, respectively ^[2] . Asperparaline A (10 μ M; 1 min) reduces the peak current amplitude of the ACh (100 μ M)-induced response of α 3 β 4 nAChR by 33.4%, while barely influencing the amplitudes of the responses to ACh of the α 4 β 2 and α 7 nAChRs in X. laevis oocytes ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Asperparaline A (10 μ g/g; p.o.) exhibits paralysis against silk worms within 1 h and lasts for 7 to 10 h ^[1] . Asperparaline A (3 μ g/g; injection with a micro-syringe) exhibits paralysis activity against silk worms within 20 min and lasts for 4 to 5 h ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Hayashi H, et, al. New paralytic alkaloids, asperparalines A, B and C, from Aspergillus japonicus JV-23. Biosci Biotechnol Biochem. 2000 Jan;64(1):111-5.

[2]. Hirata K, et, al. A fungal metabolite asperparaline a strongly and selectively blocks insect nicotinic acetylcholine receptors: the first report on the mode of action. PLoS One. 2011 Apr 1;6(4):e18354.

Page 1 of 1

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 1 www.MedChemExpress.com