Proteins

proTAME

Cat. No.: HY-124955 CAS No.: 1362911-19-0 Molecular Formula: $C_{34}H_{38}N_4O_{12}S$ Molecular Weight: 726.75

APC Target:

Pathway: Cell Cycle/DNA Damage

-20°C Storage: Powder 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (137.60 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg		
	1 mM	1.3760 mL	6.8799 mL	13.7599 mL		
	5 mM	0.2752 mL	1.3760 mL	2.7520 mL		
	10 mM	0.1376 mL	0.6880 mL	1.3760 mL		

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 3.75 mg/mL (5.16 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

proTAME, a cell-permeable proagent form of TAME, is an anaphase promoting complex/cyclosome (APC/C) inhibitor. proTAME causes cell cycle arrest in metaphase^{[1][2]}.

In Vitro

ProTAME prevents anaphase entry in mouse and bovine oocytes and also in mouse 2-cell embryos. proTAME (0-100 μ M) treatment shows dose-dependent metaphase arrest in mammalian oocytes and early cleavage embryos. And the metaphase arrest induced by this drug does not require spindle assembly checkpoint (SAC) activity^[1].

ProTAME arrest of meiosis I in mouse oocytes is due to the inhibition of APC/C. In contrast to the somatic cells, the arrest in oocytes and embryos is not reversible^[1].

proTAME (0-20 μM) dose-dependently affects morphological parameters of the spindle in oocytes and in embryos^[1]. proTAME is efficient in overcoming resistance caused by the hyperphosphorylation of CDH1 in glioblastoma cells, polo-like kinase 1 (PLK1)-based drug resistance in ovarian cancer cells and CDC20-based resistance in diffuse large B-cell lymphoma [1].

				4				[1	าไ
nroTAME inhihite	UNCVD-3	COLLC	arowth	with:	an IC	ot '	175	11/1/11	۷.
proTAME inhibits	OVCAIL-3	CEIIS	giowtii	VVILII	311 105()	UI.	12.0	μινι	-,

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Nat Commun. 2022 Dec 13;13(1):7732.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Lenka Radonova, et al. ProTAME Arrest in Mammalian Oocytes and Embryos Does Not Require Spindle Assembly Checkpoint Activity. Int J Mol Sci. 2019 Sep 13;20(18):4537.

[2]. Monika Raab, et al. Blocking Mitotic Exit of Ovarian Cancer Cells by Pharmaceutical Inhibition of the Anaphase-Promoting Complex Reduces Chromosomal Instability. Neoplasia. 2019 Apr;21(4):363-375.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA