Product Data Sheet

hVEGF-IN-1

Cat. No.:HY-101931CAS No.:1637443-98-1Molecular Formula: $C_{34}H_{43}N_7O_2$ Molecular Weight:581.75Target:VEGFR

Pathway: Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

4°C 2 years In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (42.97 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7190 mL	8.5948 mL	17.1895 mL
	5 mM	0.3438 mL	1.7190 mL	3.4379 mL
	10 mM	0.1719 mL	0.8595 mL	1.7190 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.30 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.30 mM); Clear solution

BIOLOGICAL ACTIVITY

hVEGF-IN-1, a quinazoline derivative, could specifically bind to the G-rich sequence in the internal ribosome entry site A (IRES-A) and destabilize the G-quadruplex structure. hVEGF-IN-1 binds to the IRES-A (WT) with a K_d of 0.928 µM in SPR experiments. hVEGF-IN-1 could hinder tumor cells migration and repress tumor growth by decreasing VEGF-A protein expression^[1].

 ${\sf IC_{50}}$ & Target ${\sf VEGFR}^{[1]}$

In Vitro hVEGF-IN-1 (compound 1) (1 nM-100 μ M; 5 min) binds to IRES-A (WT) and IRES-A mutant RNA oligomer (IRES-MU1) with K_ds of 1.29 and 13.4 μ M by microscale thermophoresis (MST) measurements, respectively^[1].

hVEGF-IN-1 (0.375-3 μ M; 0-24 h) reduces MDA-MB-231 cell migration approximately 25% at the concentration of 3 μ M^[1].

hVEGF-IN-1 (0.1875-3 μ M; 48 h) reduces the level of VEGF-A protein in MCF-7 cells^[1].

hVEGF-IN-1 (0.375-3 μ M; 48 h) decreases the relative wound closure of migrated MCF-7 cells by -35% at the concentration of 3 μ M^[1].

hVEGF-IN-1 (1.25-10 μ M) reduces the stability of the IRES-A G-Quadruplex in a dose-dependent manner [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	MCF-7 cells	
Concentration:	0.1875, 0.375, 0.75, 1.5, 3 μM	
Incubation Time:	48 hours	
Result:	Down-regulated hVEGF-A expression.	

In Vivo

hVEGF-IN-1 (compound 1) (7.5 mg/kg; i.p. once daily for 20 d) inhibits tumor growth in a human breast tumor xenograft^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	BALB/c female nude mice were implanted MCF-7 cells ^[1]	
Dosage:	7.5 mg/kg	
Administration:	I.p. once daily for 20 days	
Result:	Reduced the tumor volume to <300 mm ³ . Reduced the tumor weight around 60.1% to a final weight of 0.18 g. Decreased the VEGF-A level in tumor tissue.	

REFERENCES

[1]. Wang SK, et, al. Discovery of Small Molecules for Repressing Cap-Independent Translation of Human Vascular Endothelial Growth Factor (hVEGF) as Novel Antitumor Agents. J Med Chem. 2017 Jul 13;60(13):5306-5319.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA