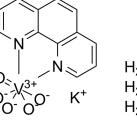
Product Data Sheet

bpV(phen) trihydrate

Cat. No.: HY-122818 CAS No.: 171202-16-7 Molecular Formula: $C_{12}H_{14}KN_2O_8V$


Target: PTEN; Phosphatase; Parasite; Apoptosis

404.29

Pathway: PI3K/Akt/mTOR; Metabolic Enzyme/Protease; Anti-infection; Apoptosis

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

H₂O H₂O H₂O

SOLVENT & SOLUBILITY

In Vitro

Molecular Weight:

 $H_2O: 18.18 \text{ mg/mL}$ (44.97 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4735 mL	12.3674 mL	24.7347 mL
	5 mM	0.4947 mL	2.4735 mL	4.9469 mL
	10 mM	0.2473 mL	1.2367 mL	2.4735 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: PBS

Solubility: 25 mg/mL (61.84 mM); Clear solution; Need ultrasonic and warming

BIOLOGICAL ACTIVITY

Description bpV(phen) trihydrate, a insulin-mimetic agent, is a potent protein tyrosine phosphatase (PTP) and PTEN inhibitor with IC₅₀s of 38 nM, 343 nM and 920 nM for PTEN, PTP-β and PTP-1B, respectively. bpV(phen) trihydrate inhibits proliferation of the

protozoan parasite *Leishmania* in vitro. bpV(phen) trihydrate strongly induces the secretion of a large number of chemokines and pro-inflammatory cytokines, and it activates a Th1-type pathway (IL-12, IFNy). bpV(phen) trihydrate can

also induce cell apoptosis, and has anti-angiogenic and anti-tumor activity $^{[1][2][3][4][5]}$.

IC₅₀ & Target IC50: 38 nM (PTEN), 343 nM (PTP-β) and 920 nM (PTP-1B)^[3]

Parasite Leishmania^[2]

Apoptosis^[1]

In Vitro bpV(phen) (5 μM; 24.5 hours; H9c2 cells) treatment causes a further decrease of cell viability in H/R-injured H9c2 cells^[1].

bpV(phen) (5 μM; 24.5 hours; H9c2 cells) treatment increases the apoptosis of H/R-injured H9c2 cells^[1].

 $bpV(phen)~(5~\mu\text{M}; 24.5~hours; H9c2~cells)~treatment~significantly~promotes~the~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~of~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytochrome~C~in~accumulation~cytoplasmic~Cytoplasmic~Cytochrome~C~in~accumulation~c$

H/R-injured H9c2 cells^[1].

After stimulation of bpV(phen), PTEN-induced putative kinase protein 1 (PINK1)/Parkin-mediated mitophagy is inhibited^[1]. bpV(phen) is an insulin-mimetic agent following insulin-receptor tyrosine kinase hyperphosphorylation and activation^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

${\sf Cell\ Viability\ Assay}^{[1]}$

Cell Line:	Hypoxia/reoxygenation (H/R)-injured H9c2 cells	
Concentration:	5 μΜ	
Incubation Time:	24.5 hours (hypoxia for 24 h; reoxygenation for 30 minutes)	
Result:	Caused a further decrease of cell viability.	
Apoptosis Analysis ^[1]		
Cell Line:	Hypoxia/reoxygenation (H/R)-injured H9c2 cells	
Concentration:	5 μΜ	
Incubation Time:	24.5 hours (hypoxia for 24 h; reoxygenation for 30 minutes)	
Result:	Increased the apoptosis of H/R-injured H9c2 cells.	
Western Blot Analysis ^[1]		
Cell Line:	Hypoxia/reoxygenation (H/R)-injured H9c2 cells	
Concentration:	5 μΜ	
Incubation Time:	24.5 hours (hypoxia for 24 h; reoxygenation for 30 minutes)	
Result:	Showed an increased release of Cytochrome C.	

In Vivo

bpV(phen) (5 mg/kg; intraperitoneal injection; daily; for 38 days; male BALB/c nude (nu/nu) athymic mice) treatment causes a significant reduction in average tumor volume $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male BALB/c nude (nu/nu) athymic mice (6-7 weeks old) injected with PC-3 cells ^[2]	
Dosage:	5 mg/kg	
Administration:	Intraperitoneal injection; daily; for 38 days	
Result:	Caused a significant reduction in average tumor volume.	

CUSTOMER VALIDATION

- Nat Commun. 2022 May 19;13(1):2762.
- Biochem Bioph Res Co. 2020 Sep 3;529(4):1045-1052.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES

- [1]. Tang W, et al. PTEN-mediated mitophagy and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury. In Vitro Cell Dev Biol Anim. 2019 Oct;55(9):741-748.
- [2]. Caron D, et al. Protein tyrosine phosphatase inhibition induces anti-tumor activity: evidence of Cdk2/p27 kip1 and Cdk2/SHP-1 complex formation in human ovarian cancer cells. Cancer Lett. 2008 Apr 18;262(2):265-75.
- [3]. Schmid AC, et al. Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett. 2004 May 21;566(1-3):35-8.
- [4]. Band CJ, et al. Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: specificity of inhibition of IRK-associated protein tyrosine phosphatase(s) by bpV(phen). Mol Endocrinol. 1997 Dec;11(13):1899-910.
- [5]. Chen Q, et al. Potassium Bisperoxo(1,10-phenanthroline)oxovanadate (bpV(phen)) Induces Apoptosis and Pyroptosis and Disrupts the P62-HDAC6 Protein Interaction to Suppress the Acetylated Microtubule-dependent Degradation of Autophagosomes. J Biol Chem. 201

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com