YM-53601 free base

Cat. No.:	HY-100313	
CAS No.:	182959-28-0	
Molecular Formula:	C ₂₁ H ₂₁ FN ₂ O	H N N
Molecular Weight:	336.4	
Target:	Farnesyl Transferase; HCV	
Pathway:	Metabolic Enzyme/Protease; Anti-infection	N
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

BIOLOGICAL ACTIV			
Description	YM-53601 free base, a squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in vivo ^[1] . YM-53601 free base inhibits squalene synthase derived from human hepatoma cells with an IC ₅₀ of 79 nM. Lipid-lowering agent ^[2] . YM-53601 free base is also an inhibitor of farnesyl-diphosphate farnesyltransferase 1 (FDFT1) enzyme activity and abrogates HCV propagation ^[3] .		
IC ₅₀ & Target	Target: Squalene synthetase ^[1]		
In Vitro	pig, rhesus monkey, and YM-53601 free base inhib the IC ₅₀ of 170 nM ^[2] . YM-53601 (1 μM) free bas (1 μM) free base reduces	 bits squalene synthase activities in hepatic microsomes from several species of rat, hamster, guinea- I human-derived HepG2 cell with IC₅₀s of 90, 170, 46, 45, and 79 nM, respectively^[1]. bits conversion of [3H]farnesyl diphosphate to [³H]squalene by hamster liver squalene synthase with see potentiates the susceptibility of H35 cells to thapsigargin, lonidamine, and doxorubicin. YM-53601 bithe mitochondrial cholesterol levels in both H35 and HepG2 cells^[4]. htly confirmed the accuracy of these methods. They are for reference only. H35 and HepG2 cells 1 μM 24 hours Reduced the mitochondrial cholesterol levels in both H35 and HepG2 cells. 	
In Vivo	 YM-53601 free base suppresses cholesterol biosynthesis in rats (ED₅₀, 32 mg/kg)^[1]. YM-53601 free base also reduces plasma non-HDL cholesterol levels in hamsters by approximately 70% at an oral dose of 50 mg/kg/day for 5 days^[2]. YM-53601 free base potentiates Doxorubicin-mediated hepatocellular carcinoma cells (HCC) growth arrest and cell death in vivo^[4]. " MCE has not independently confirmed the accuracy of these methods. They are for reference only. Animal Model: Sprague-Dawley (SD) rats weighing 150-170 g^[1] 		

Product Data Sheet

Dosage:	6.25, 12.5, 25 or 50 mg/kg		
Administration:	Given a single p.o.		
Result:	Inhibited cholesterol biosynthesis from acetate in a dose-dependent manner in rats. The ED ₅₀ value for YM-53601 cholesterol biosynthesis inhibition is 32 mg/kg.		
Animal Model:	Five- to six-week-old male BALB/c athymic (nu/nu) nude mice ^[4]		
Dosage:	15 mg/kg		
Administration:	2 wk of daily treatment by p.o. gavage		
	Significantly decreased the intratumor cholesterol levels.		

CUSTOMER VALIDATION

- Int J Mol Sci. 2023 Oct 9;24(19):15020.
- Research Square Preprint. 2023 Jun 22.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. T Ugawa, et al. YM-53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Br J Pharmacol. 2000 Sep;131(1):63-70.

[2]. Tsukasa Ishihara, et al. Syntheses of 3-ethylidenequinuclidine derivatives as squalene synthase inhibitors. Part 2: enzyme inhibition and effects on plasma lipid levels. Bioorg Med Chem. 2003 Aug 15;11(17):3735-45.

[3]. Eun-Mee Park, et al. Farnesyl-diphosphate farnesyltransferase 1 regulates hepatitis C virus propagation. FEBS Lett. 2014 May 2;588(9):1813-20.

[4]. Joan Montero, et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 2008 Jul 1;68(13):5246-56.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA