Proteins

Vilanterol trifenatate

Cat. No.: HY-14300A 503070-58-4 CAS No.: Molecular Formula: $C_{44}H_{49}Cl_2NO_7$ Molecular Weight: 774.77

Target: Adrenergic Receptor

Pathway: GPCR/G Protein; Neuronal Signaling Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (64.54 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.2907 mL	6.4535 mL	12.9071 mL
	5 mM	0.2581 mL	1.2907 mL	2.5814 mL
	10 mM	0.1291 mL	0.6454 mL	1.2907 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2 mg/mL (2.58 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2 mg/mL (2.58 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2 mg/mL (2.58 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	Vilanterol trifenatate (GW642444 trifenatate) is a long-acting β_2 -adrenoceptor (β_2 -AR) agonist with inherent 24-hour activity. The pEC ₅₀ s for β_2 -AR, β_1 -AR and β_3 -AR are 10.37, 6.98 and 7.36, respectively.	
IC ₅₀ & Target	β adrenergic receptor	
In Vitro	The selectivity of Vilanterol trifenatate for β_2 -AR over the other β -AR receptor subtypes (β_2 and β_3) is established by testing the ability of Vilanterol to elicit concentration-dependent increases in cAMP in CHO cells expressing human β_1 -, β_2 -, and β_3 -AR. Vilanterol is demonstrated to be highly selective for the β_2 -AR with at least a 1000-fold selectivity over both β_2 - and β_3 -AR subtypes. This analysis results in a low-affinity pK _D for [3 H]Vilanterol of 9.44±0.07 (n=4) in the presence Gpp(NH)p and a	

high-affinity pK_D of 10.82±0.12 (n=4) and a low-affinity pK_D 9.47±0.17 (n=4) in the absence of Gpp(NH)p. In addition, a low-affinity pK_D for [3H]Vilanterol of 9.52±0.24 (n=4) in the absence of Gpp(NH)p (37°C) is observed [1]. Vilanterol trifenatate is a novel inhaled long-acting β_2 -agonist with inherent 24 h activity in vitro in development as a combination with the inhaled corticosteroid fluticasone furoate for both COPD and asthma[2]. Vilanterol is a novel long-acting β_2 -agonist (LABA) with inherent 24-hour activity for once-daily clinical treatment of chronic obstructive pulmonary disease (COPD) and asthma in combination with the inhaled novel corticosteroid fluticasone furoate, also active for 24 hours[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

Saturation, association, and dissociation binding studies are performed for [3 H]Vilanterol to determine receptor binding kinetics at the β_2 -AR (equilibrium dissociation constant (K_D), total number of receptors (Bmax), association rate (k_{on}), and dissociation rate (k_{off}) are calculated). For saturation binding, membranes (in a volume of 1.4 mL to avoid ligand depletion) are incubated with increasing concentrations of [3 H]Vilanterol (2 0.01-1.3 nM) for 5 h before filtration. For association binding, membranes are incubated with different concentrations of [3 H]Vilanterol (2 0.1-1.9 nM) for varying incubation times up to 1 h before filtration. For dissociation binding, membranes are preincubated for 1 h with a fixed concentration of [3 H]Vilanterol (2 1.1 nM) before dissociation is initiated by a 1:20 dilution in binding buffer (containing 10 μ M cold Vilanterol) and then incubated for varying times up to 8 h before filtration. Saturation binding is also completed for [3 H]CGP12177 (increasing concentrations of 2 0.01-2.8 nM) in the same format as described above for [3 H]Vilanterol. To determine the affinity of 3 2-AR agonists and antagonists, competition binding displacement studies are completed in which membranes are incubated with a fixed concentration of [3 H]Vilanterol (3 0.2 nM) and increasing concentrations of unlabeled agonist/antagonist for 5 h before filtration. All competition binding displacement studies are completed in the presence of 100 μ M Gpp(NH)p to ensure that binding curves are monophasic [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Eur J Pharmacol. 2017 Oct 5;812:147-154.
- · J Pharmaceut Biomed. 2020, 113870.
- J Neuroimmunol. 2019 Jul 15;332:37-48.
- Mental Health and Neuroscience Institute. University of Alberta. 2016 Sep.
- Centre for Neuroscience. University of Alberta. 2016.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Slack RJ, et al. In vitro pharmacological characterization of vilanterol, a novel long-acting β 2-adrenoceptor agonist with 24-hour duration of action. J Pharmacol Exp Ther. 2013 Jan;344(1):218-30

[2]. Kempsford R, et al. Vilanterol trifenatate, a novel inhaled long-acting beta2 adrenoceptor agonist, is well tolerated in healthy subjects and demonstrates prolonged bronchodilation in subjects with asthma and COPD. Pulm Pharmacol Ther. 2013 Apr;26(2):256-

[3]. Harrell AW, et al. Metabolism and disposition of Vilanterol, a long-acting $\beta(2)$ -adrenoceptor agonist for inhalation use in humans. Drug Metab Dispos. 2013 Jan;41(1):89-100.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com