Product Data Sheet

Vedaprofen

Cat. No.: HY-118827 CAS No.: 71109-09-6

Molecular Formula: $C_{19}H_{22}O_2$ Molecular Weight: 282.38 Target: COX

Pathway: Immunology/Inflammation

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (177.07 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	3.5413 mL	17.7066 mL	35.4133 mL	
	5 mM	0.7083 mL	3.5413 mL	7.0827 mL	
	10 mM	0.3541 mL	1.7707 mL	3.5413 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.85 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (8.85 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.85 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Vedaprofen (Quadrisol) is a COX-1 selective nonsteroidal anti-inflammatory agent (NSAID) for serum TxB2 and exudate PGE2 inhibition $^{[1]}$. Vedaprofen is a Escherichia coli (E. coli) sliding clamp (SC) inhibitor with the IC ₅₀ of 222 μ M $^{[2]}$.
IC ₅₀ & Target	COX-1
In Vitro	Vedaprofen inhibits horse serum TxB2 and horse exudate PGE2 with IC ₅₀ s of 9 \pm 5 and 630 \pm 148 ng/mL, respectively ^[1]

Page 1 of 2 www.MedChemExpress.com

. Vedaprofen inhibit the E. coli DNA polymerase III β subunit with antibacterial potency [2]. Vedaprofen shows high E. coli SC

	binding affinity $(K_i=131~\mu\text{M})^{[2]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.							
In Vivo	Pharmacokinetic parameters of vedaprofen in dogs ^[3] .							
	Intravenous dose (mg/kg)		$t_{1/2\beta}$ (h)	AUC _{0-48 h} (h·ng/mL) AUC ₀₋		UC _{0−∞} (h·ng/mL)		
	0.5		16.8±2.2	8612±1135		9518±1223		
	Oral dose (mg/kg)	$t_{1/2\beta}\left(h\right)$	C _{max} (ng/mL)	t _{max} (h)	AUC _{0−48 h} (h·ng/mL)	AUC _{0-∞} (h·ng/mL)	F _{0-∞} (%)	
	0.5	12.7±2.1	2739±277	0.63±0.14	7090±1311	7650±1348	86±7	
	MCE has not independently confirmed the accuracy of these methods. They are for reference only.							

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

^{[1].} P Lees, et al. PK-PD integration and PK-PD modelling of nonsteroidal anti-inflammatory drugs: principles and applications in veterinary pharmacology. J Vet Pharmacol Ther. 2004 Dec;27(6):491-502.

^{[2].} Zhou Yin,et al. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs. Chem Biol. 2014 Apr 24;21(4):481-487.

^{[3].} M Hoeijmakers, et al. The pharmacokinetics of Vedaprofen and its enantiomers in dogs after single and multiple dosing. J Vet Pharmacol Ther. 2005 Jun;28(3):305-12.