Product Data Sheet

Vanoxerine dihydrochloride

Cat. No.: HY-13217 CAS No.: 67469-78-7 Molecular Formula: $C_{28}H_{34}Cl_{2}F_{2}N_{2}O$

Molecular Weight: 523

Target: **Dopamine Transporter** Pathway: **Neuronal Signaling**

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO: 9.4 mg/mL (17.97 mM; Need ultrasonic and warming)

H₂O: 1 mg/mL (1.91 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9120 mL	9.5602 mL	19.1205 mL
	5 mM	0.3824 mL	1.9120 mL	3.8241 mL
	10 mM	0.1912 mL	0.9560 mL	1.9120 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.98 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Vanoxerine dihydrochloride (GBR-12909 dihydrochloride) is a competitive, potent, and highly selective dopamine reuptake inhibitor (K_i=1 nM). Vanoxerine dihydrochloride (GBR-12909 dihydrochloride) binds to the target site on the dopamine

transporter $(DAT)^{[1]}$.

Ki: 1 nM (dopamine reuptake)^[1] IC₅₀ & Target

In Vitro Vanoxerine dihydrochloride (GBR-12909 dihydrochloride) inhibits the uptake of dopamlne (DA), with an IC₅₀ in the low $nanomolar\ range, and\ is\ several-fold\ less\ potent\ as\ inhibitors\ of\ the\ uptake\ of\ norad renaline\ and\ 5-HT^{[2]}.$

Page 1 of 2

	type calcium channel a	?Vanoxerine dihydrochloride (GBR-12909 dihydrochloride) is also an oral, mixed ion channel blocker with IKr, INa, and L-type calcium channel activity ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo		Vanoxerine dihydrochloride (2.5-20 mg/kg; i.p.) significantly increases the ambulatory activity ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male mice (ddY strain at 6 weeks of age) ^[3]		
	Dosage:	2.5, 5, 10, 20 mg/kg		
	Administration:	Intraperitoneal injection		
	Result:	The ambulatory activity of mice increased in a dose-dependent manner, with a maximal increase at 30 min after the administration.		

CUSTOMER VALIDATION

- Neuron. 2023 Mar 6;S0896-6273(23)00121-6.
- Front Cell Neurosci. 2018 Sep 11;12:309.
- Biochem Biophys Res Commun. 2020 May 14;525(4):989-996.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Rothman RB, et al. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem Pharmacol. 2008 Jan 1;75(1):2-16.
- [2]. Andersen PH. The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol.
- [3]. Hirate K, et al. Characteristics of the ambulation-increasing effect of GBR-12909, a selective dopamine uptakeinhibitor, in mice. Jpn J Pharmacol. 1991 Apr;55(4):501-11.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA