Screening Libraries

VU0119498

Cat. No.: HY-114933 CAS No.: 79183-37-2 Molecular Formula: $\mathsf{C}_{15}\mathsf{H}_{10}\mathsf{BrNO}_2$

Molecular Weight: 316.15 Target: mAChR

GPCR/G Protein; Neuronal Signaling Pathway:

Storage: Powder -20°C 3 years

-80°C In solvent 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (158.15 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1631 mL	15.8153 mL	31.6306 mL
	5 mM	0.6326 mL	3.1631 mL	6.3261 mL
	10 mM	0.3163 mL	1.5815 mL	3.1631 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	VU0119498 is a pan G_q mAChR M1, M3, M5 positive allosteric modulator (PAM), with EC ₅₀ s of 6.04, 6.38, and 4.08 μ M, respectively. VU0119498 has antidiabetic activity [1][2][3].
In Vitro	VU0119498 (0.01-30 μ M; 150 s) potentiates Ach responses in M1, M3, and M5-expressing CHO cells, with EC ₅₀ s of 6.04, 6.38, and 4.08 μ M, respectively ^[1] . VU0119498 (3-20 μ M) augments ACh-mediated increasing in insulin secretion and intracellular calcium levels in MIN6-K8 cells ^[3] . VU0119498 (20 μ M; 90 min) enhances ACh-induced insulin release in mouse and human pancreatic islets ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	VU0119498 (0.1-2 mg/kg; a single i.p.) improves glucose tolerance and insulin secretion in mice in a β -cell M3R-dependent fashion ^[3] . VU0119498 (0.5 mg/kg; a single i.p.) improves glucose tolerance and insulin secretion in obese, glucose-intolerant mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male WT mice (12 weeks) ^[3]	
Dosage:	0.1, 0.5, 2 mg/kg	
Administration:	A single i.p.	
Result:	Caused a significant improvement in glucose tolerance at the dose of 0.5 mg/kg. Significantly augmented GSIS at the dose of 0.5 mg/kg.	

REFERENCES

- [1]. Bridges TM, et, al. Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem. 2009 Jun 11;52(11):3445-8.
- [2]. Bridges TM, et, al. Chemical lead optimization of a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) lead. Part II: development of a potent and highly selective M1 PAM. Bioorg Med Chem Lett. 2010 Mar 15;20(6):1972-5.
- [3]. Zhu L, et, al. Allosteric modulation of β -cell M 3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18684-18690.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ {\tt MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA