

UNC9994

Cat. No.: HY-117829 CAS No.: 1354030-51-5 Molecular Formula: $C_{21}H_{22}Cl_2N_2OS$

Molecular Weight: 421.38

Target: Dopamine Receptor; 5-HT Receptor; Histamine Receptor; Arrestin Pathway: GPCR/G Protein; Neuronal Signaling; Immunology/Inflammation

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description UNC9994, an analog of Aripiprazole, is a functionally selective β-arrestin-biased dopamine D2 receptor (D2R) agonist with EC $_{50}$ <10 nM for β -arrestin-2 recruitment to D2 receptors. UNC9994 is simultaneously partial agonists of β -arrestin-2 translocation and antagonists of G_i-regulated cAMP production. Antipsychotic Activity^[1].

IC₅₀ & Target D₂ Receptor D₃ Receptor D₄ Receptor 5-HT_{2A} Receptor 79 nM (Ki) 17 nM (Ki) 138 nM (Ki) 140 nM (Ki) 5-HT_{2B} Receptor 5-HT_{2C} Receptor 5-HT_{1F} Receptor H₁ Receptor 25 nM (Ki) 512 nM (Ki) 26 nM (Ki) 2.1 nM (Ki)

In Vitro

UNC9994 displays a lower binding affinity (K_i=79 nM) to D2R than UNC9975, UNC0006, and aripiprazole. At serotonin (as known as 5-HT) receptors, UNC9994 displays moderate to high binding affinities (K_i=25-512 nM) for 5HT_{2A}, 5HT_{2B}, 5HT_{2C}, and $5HT_{1A}$, but is significantly less potent in functional assays (Ca^{2+} mobilization FLIPR or cAMP biosensor). UNC9994 is an antagonist at 5HT_{2A} and 5HT_{2B} and agonists at 5HT_{2C} and 5HT_{1A}. UNC9994 has relatively high affinities to H₁-histamine receptor (K_i =2.4 nM) but is less potent antagonists in H_1 functional assays^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

The antipsychotic-like activity displayed by UNC9994 (2 mg/kg; i.p.) in wild-type mice is completely abolished in β-arrestin-2 knockout mice^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C57BL/6J wild-type and β -arrestin-2 knockout mice (phencyclidine-induced hyperlocomotion) $^{[1]}$
Dosage:	2 mg/kg
Administration:	I.p. followed 30 min later with 6 mg/kg phencyclidine
Result:	Markedly inhibited PCP-induced hyperlocomotion in wild-type mice. This significant antipsychotic-like activity of UNC9994 was completely abolished in β -arrestin-2 knockout mice.

REFERENCES				
[1]. Allen JA, et al. Discovery of A. 2011;108(45):18488-18493.	3-arrestin-biased dopamine D2 ligands for	probing signal transdu	ction pathways essential for anti	psychotic efficacy. Proc Natl Acad Sci U
	Caution: Product has not been fully	validated for medica	al applications. For research (ise only
		9-228-5909	E-mail: tech@MedChemExpr	
	Address: 1 Deer Park Dr	r, Suite Q, Monmouth	Junction, NJ 08852, USA	

Page 2 of 2 www.MedChemExpress.com