Product Data Sheet

UNC0379

Cat. No.: HY-12335 CAS No.: 1620401-82-2 Molecular Formula: $C_{23}H_{35}N_5O_2$ Molecular Weight: 413.56

Target: Histone Methyltransferase

Pathway: **Epigenetics**

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 1 year

> -20°C 6 months

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (120.90 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.4180 mL	12.0901 mL	24.1803 mL
	5 mM	0.4836 mL	2.4180 mL	4.8361 mL
	10 mM	0.2418 mL	1.2090 mL	2.4180 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.05 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.05 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.05 mM); Clear solution

BIOLOGICAL ACTIVITY

Description UNC0379 is a selective, substrate-competitive inhibitor of lysine methyltransferase SETD8 (KMT5A) with an IC₅₀ of 7.3 μM, K_D value of 18.3 µM. UNC0379 can be used in the research of inflammation and cancers, such as pulmonary fibrosis, ovarian cancer, neuroblastoma^{[1][2][3]}.

IC₅₀ & Target SETD8/KMT5A

In Vitro UNC0379 (1-10 μ M, 9 days) inhibits HGSOC cells proliferation^[2]. ?UNC0379 (10 μ M, 96 h) increases in the proportion of sub-G1 phase cells in HGSOC cells^[2].

?UNC0379 (10 μ M, 48 h) induces myofibroblast de-differentiation and inhibits additional fibroblast to myofibroblast differentiation [3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

 ${\sf Cell\ Viability\ Assay}^{[1]}$

Cell Line:	JHOS2, JHOS3, JHOS4, OVCAR3, OVCAHO, OVKATE, KURAMOCHI, TYKnu	
Concentration:	1-10 μΜ	
Incubation Time:	9 days	
Result:	Inhibited HGSOC cells proliferation with IC ₅₀ s ranging from 0.39 to 3.20 μM.	

Cell Cycle Analysis^[1]

Cell Line:	JHOS3, OVCAR3	
Concentration:	10 μΜ	
Incubation Time:	96 h	
Result:	Arrested cells in sub-G1 phase.	

In Vivo

UNC0379 (intratracheal administration, 1 mg/kg/day, on day7, 8, and 9) ameliorates the lung fibrosis in Bleomycin (BLM)-induced lung fibrosis mouse^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Bleomycin (BLM)-induced lung fibrosis mouse model ^[3]	
Dosage:	1 mg/kg/day	
Administration:	Intratracheal administration, on day7, 8, and 9.	
Result:	Ameliorated BLM-induced lung fibrosis (supported by the evaluation of the Ashcroft score and changes in the collagen content in the lung samples) without affecting pulmonary inflammation.	

CUSTOMER VALIDATION

- Cell Metab. 2021 Jan 5;33(1):160-173.e6.
- Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2961-2966.
- Cell Death Dis. 2018 Jan 26;9(2):129.
- Sci Rep. 2020 Mar 11;10(1):4490.
- J Gastroenterol Hepatol. 2021 May 14.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

 $[1]. \ {\it Miku Wada, et al. Epigenetic Modifier SETD8 as a Therapeutic Target for High-Grade Serous Ovarian Cancer. Biomolecules. 2020 Dec 16;10(12):1686.}$

[7] Kaita Haai at al Jahihitian of the CETO Dathway Ameliarated Lucy Eiheasia Fran Through Eiheahlast Dadifferentistics Front Mel Diseri 2000 Aug 5.7 100
[2]. Keita Ugai, et al. Inhibition of the SET8 Pathway Ameliorates Lung Fibrosis Even Through Fibroblast Dedifferentiation. Front Mol Biosci. 2020 Aug 5;7:192.
[3]. Ma A, et al. Discovery of a Selective, Substrate-Competitive Inhibitor of the Lysine Methyltransferase SETD8. J Med Chem. 2014 Aug 14;57(15):6822-33.
Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA
Address: 2 Sect 1 at 181, batte Q, Motimouth battetion, 110 00052, 001

Page 3 of 3 www.MedChemExpress.com