Product Data Sheet

UBP316

 Cat. No.:
 HY-107601

 CAS No.:
 936095-50-0

 Molecular Formula:
 $C_{20}H_{19}N_3O_6S$

 Molecular Weight:
 429.45

Target: iGluR

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

1M NaOH: 80 mg/mL (186.28 mM; ultrasonic and adjust pH to 11 with NaOH) DMSO: 2 mg/mL (4.66 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3286 mL	11.6428 mL	23.2856 mL
	5 mM	0.4657 mL	2.3286 mL	4.6571 mL
	10 mM	0.2329 mL	1.1643 mL	2.3286 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 0.2 mg/mL (0.47 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.2 mg/mL (0.47 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.2 mg/mL (0.47 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

UBP316 (ACET) is a highly potent and selective kainate receptor GluK1 (GluR5) antagonist, with a K_b value of 1.4 nM. UBP316 is effective at blocking the depression of both field excitatory postsynaptic potentials (fEPSPs) and monosynaptically-

is effective at blocking the depression of both field excitatory postsynaptic potentials (fEPSPs) and monosynaptically-

evoked GABAergic transmission induced by ATPA, a GluK1 selective agonist^[1].

 IC_{50} & Target Kb: 1.4 nM (GluK1)^[1]

In Vitro

UBP316 is ineffective at GluK2 (GluR6) receptors at all concentrations tested (up to 100 μ M) and had no effect at GluK3 (GluR7) when tested at 1 μ M^[1].

 ${\tt UBP316~(200~nM)}~reduces~short-term~facilitation~of~pre-synaptic~calcium~transients~following~repetitive~spikes \cite{Lambda}.$

UBP316 effectively antagonises GluK1-mediated depression of excitatory transmission in CA1 region of the hippocampus in vitro[1]

UBP316 blocks induction of NMDA receptor-independent long-term potentiation (LTP) $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Sheila L Dargan, et al. ACET is a highly potent and specific kainate receptor antagonist: Characterisation and effects on hippocampal mossy fibre function. Neuropharmacology. 2009 Jan;56(1):121-30.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA