Taminadenant

Cat. No.: HY-109139 CAS No.: 1337962-47-6 Molecular Formula: C₁₀H₈BrN₇ Molecular Weight: 306.12

Target: Adenosine Receptor Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 2 years

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (408.34 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	3.2667 mL	16.3335 mL	32.6669 mL	
	5 mM	0.6533 mL	3.2667 mL	6.5334 mL	
	10 mM	0.3267 mL	1.6333 mL	3.2667 mL	

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.79 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.79 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.79 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Taminadenant (NIR178; PBF509) is a highly potent and orally active adenosine A_{2A} receptor (A_{2A}R) antagonist.

> Taminadenant can antagonize A2AR agonist-mediated cAMP accumulation and impedance responses with K_B values of 72.8 nM and 8.2 nM, respectively. Taminadenant reverses motor impairments in several rat models of movement disorders, including catalepsy, tremor, and hemiparkinsonism. Taminadenant can also inhibit tumor growth when combined with

 $\underline{\textbf{Spartalizumab}} \ (\textbf{HY-P9972}). \ Tamina denant \ reactivate \ the \ antitumor \ immune \ response \ [1][2].$

Adenosine receptor^[1] IC₅₀ & Target

In Vitro

Taminadenant (PBF509) does not show any agonist efficacy in HEK cells permanently expressing the human $A_{2A}R^{SNAP}$, but completely antagonizes the agonist-mediated cAMP accumulation in $A_{2A}R^{SNAP}$ expressing HEK cells with an IC₅₀ of 72.8 ± 17.4 nM^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Taminadenant (PBF509) (0.3, 3, 7.5, 10, or 30 mg/kg; p.o.; single dosage) attenuates the cataleptic effects of Haloperidol, attenuates pilocarpine-induced tremulous jaw movement, enhances the effects of L-DOPA, shows a robust antiparkinsonian activity and displays antidyskinetic efficacy^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Sprague-Dawley rats (240-250 g; induced catalepsy by s.c. with 1 mg/kg $\underline{\text{Haloperidol}}$ (HY-14538)) ^[1]				
Dosage:	3, 10, or 30 mg/kg				
Administration:	p.o.; single dosage				
Result:	Dose-dependently attenuated the cataleptic effects of Haloperidol when administered 1 h after Haloperidol injection.				
Animal Model:	Sprague-Dawley rats (240-250 g; induced tremulous jaw movement by s.c. with 1 mg/kg Pilocarpine (HY-B0726A)) ^[1]				
Dosage:	0.3, 3, or 7.5 mg/kg				
Administration:	p.o.; single dosage				
Result:	Dose-dependently attenuated pilocarpine-induced tremulous jaw movement, being effective at the lowest dose tested.				
Animal Model:	Sprague-Dawley rats (240-250 g; induced hemiparkinsonian by unilateral injection of $\underline{\text{6-OHDA}}$ (HY-B1081) in the medial forebrain bundle) ^[1]				
Dosage:	0.3 and 3 mg/kg				
Administration:	p.o.; single dosage				
Result:	Enhanced the effects of L-DOPA with a minimum efficacious dose (MED) of 3 mg/kg p.o				
Animal Model:	Sprague-Dawley rats (240-250 g; induced dyskinesias by i.p. 4 mg/kg <u>L-DOPA</u> (HY-N0304) for 14 days and i.p. 15 mg/kg <u>Benserazide hydrochloride</u> (HY-B0404A)) ^[1]				
Dosage:	0.3 or 3 mg/kg				
Administration:	p.o.; single dosage				
Result:	Showed a robust antiparkinsonian activity and displayed antidyskinetic efficacy.				

REFERENCES

[1]. Núñez F, et al. PBF509, an Adenosine A2A Receptor Antagonist With Efficacy in Rodent Models of Movement Disorders. Front Pharmacol. 2018 Oct 19;9:1200.

2]. Chiappori AA, et al. Phase I Advanced Non-Small Cell Lung			eceptor Antagonist, with or without	Spartalizumab (PDR001), in Patients with	
	Caution: Product has no	t been fully validated for me	dical applications. For research	n use only.	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemEx		
	Address: 1 [Deer Park Dr, Suite Q, Monmo	uth Junction, NJ 08852, USA		

Page 3 of 3 www.MedChemExpress.com