Product Data Sheet

TRAM-39

Cat. No.: HY-103308 CAS No.: 197525-99-8 Molecular Formula: $C_{20}H_{14}CIN$ Molecular Weight: 303.78

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (164.59 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.2919 mL	16.4593 mL	32.9186 mL
	5 mM	0.6584 mL	3.2919 mL	6.5837 mL
	10 mM	0.3292 mL	1.6459 mL	3.2919 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	TRAM-39 is a selective blocker of intermediate conductance Ca2+-activated K+ (IK_{Ca}) channels. TRAM-39 inhibits KCa3.1 channel with an IC_{50} value of 60 nM. TRAM-39 can be used for the research of ataxia, epilepsy, memory disorders, schizophrenia and Parkinson's disease ^{[1][2][3][4]} .
IC ₅₀ & Target	IC50: 60 nM (KCa3.1 channel) ^[4]
In Vitro	TRAM-39 (1 μ M) reduces the peak amplitude of gKCa2 in sympathetic LAH neurons (mean percentage change 56%) in BAE cells ^[2] . TRAM-39 (200 nM) diminishes lipopolysaccharide (LPS)-induced cryptdin release from paneth cells ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	TRAM-39 (1 μ M; adds to the perfusate) fully blocks all IK _{Ca} channels in multicellular preparations ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Davies PJ, et al. Different types of potassium channels underlie the long afterhyperpolarization in guinea-pig sympathetic and enteric neurons. Auton Neurosci. 2006 Jan 30;124(1-2):26-30.
- [2]. Burnham MP, et al. Impaired small-conductance Ca2+-activated K+ channel-dependent EDHF responses in Type II diabetic ZDF rats. Br J Pharmacol. 2006 Jun;148(4):434-41.
- [3]. Ayabe T, et al. Modulation of mouse Paneth cell alpha-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J Biol Chem. 2002 Feb 1;277(5):3793-800.
- [4]. Wulff H, et al. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem. 2007;14(13):1437-57.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com