Product Data Sheet

THZ2

Cat. No.: HY-12280 CAS No.: 1604810-84-5 Molecular Formula: $C_{31}H_{28}CIN_{7}O_{2}$ Molecular Weight: 566.05

Target: CDK

Pathway: Cell Cycle/DNA Damage

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 21.67 mg/mL (38.28 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7666 mL	8.8331 mL	17.6663 mL
	5 mM	0.3533 mL	1.7666 mL	3.5333 mL
	10 mM	0.1767 mL	0.8833 mL	1.7666 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.17 mg/mL (3.83 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.17 mg/mL (3.83 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	THZ2 is a potent and selective CDK7 inhibitor with an IC ₅₀ of 13.9 nM.					
IC ₅₀ & Target	CDK7 13.9 nM (IC ₅₀)	CDK1 96.9 nM (IC ₅₀)	CDK2 222 nM (IC ₅₀)	CDK5 134 nM (IC ₅₀)		
	CDK9 194 nM (IC ₅₀)	CDK8 6830 nM (IC ₅₀)				
In Vitro	THZ2 selectively targets CDK7 and potently inhibits the growth of triple-negative but not ER/PR ⁺ breast cancer cells. THZ2 at low nanomolar doses also efficiently suppresses the clonogenic growth of TNBC cells with IC ₅₀ of appr 10 nM. THZ2 induces					

apoptotic cell death in triple-negative but not ER/PR⁺ breast cancer cells or normal human cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

THZ2 (10 mg/Kg) markedly reduces the growth rate of tumors in mice and demonstrates an anti-tumor activity. Compared to vehicle-treated tumors, tumor tissues isolated from mice treated with THZ2 has reduced proliferation and increased apoptosis, as indicated by immunostaining against Ki67 and cleaved Caspase 3 respectively. THZ2 in NOD-SCID mice leads to reduced body weight, suggesting that THZ2 mayt be less well-tolerated in this particular mouse strain^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

For 96-well plate assay, cells are plated at the density of 2000 cells per well, and on the next day treated with THZ1 or THZ2 of various concentrations. After 48-hour incubation, cells are fixed and stained with crystal violet. The staining is then extracted by adding each well with 10% acetic acid, with absorbance measured at 590 nm with 750 nm as a reference.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal
Administration [1]

Mice: Nude mice (CrTac:NCr-Foxn1nu) are γ -irradiated with a single dose of 400 rads six hours before transplantation of cells. Breast cancer cells are harvested and resupended in 40% Matrigel-Basement Membrane Matrix, LDEV-free, and then injected (100 μ L per site) into the fourth pair of mammary fat pads of mice. Tumors are measured in two dimensions by using manual calipers. Tumor volume is calculated using the formula: V=0.5× length × width × width. Animal with tumor established (mean tumor volume of appr 200 mm³) are randomLy divided into two groups, which are then treated with vehicle (10% DMSO in D5W, 5% dextrose in water) or THZ2 (3 mg/mL, prepared in vehicle solutions) at the dose of 10 mg/kg intraperitoneally twice daily. Tumor volume is measure every 2-3 days. Upon harvesting tumors, tumors are cut into half, with one half fixed in formalin overnight and then in 70% ethanol for histopathology analysis, and the other half snap frozen in liquid nitrogen for immunoblotting.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Cell Biol. 2020 Aug;22(8):986-998.
- bioRxiv. 2020 Apr.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Wang Y, et al. CDK7-Dependent Transcriptional Addiction in Triple-Negative Breast Cancer. Cell. 2015 Sep 24;163(1):174-186.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA