TAPI-2

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-100211 187034-31-7 C ₁₉ H ₃₇ N ₅ O ₅ 415.53 MMP; SARS-CoV Metabolic Enzyme/Protease; Anti-infection 4°C, sealed storage, away from moisture and light * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light)	$HO_{N} \xrightarrow{O}_{H} \xrightarrow{I}_{O} \xrightarrow{I}_{M} \xrightarrow{I}_{O} \xrightarrow{I}_{N} I$
---	--	--

SOLVENT & SOLUBILITY

In Vitro	Ethanol : 50 mg/mL (DMSO : ≥ 22 mg/mL (H ₂ O : 100 mg/mL (240.66 mM; Need ultrasonic) Ethanol : 50 mg/mL (120.33 mM; Need warming) DMSO : ≥ 22 mg/mL (52.94 mM) * "≥" means soluble, but saturation unknown.				
		Mass Solvent Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	2.4066 mL	12.0328 mL	24.0657 mL	
		5 mM	0.4813 mL	2.4066 mL	4.8131 mL	
		10 mM	0.2407 mL	1.2033 mL	2.4066 mL	
	Please refer to the sc	lubility information to select the app	propriate solvent.			
In Vivo	Solubility: ≥ 2.08 r 2. Add each solvent	one by one: 10% DMSO >> 40% PE0 ng/mL (5.01 mM); Clear solution one by one: 10% DMSO >> 90% cor ng/mL (5.01 mM); Clear solution		0 >> 45% saline		

BIOLOGICAL ACTIVITY		
Description	TAPI-2 (TNF Protease Inhibitor 2) is a broad-spectrum inhibitor of matrix metalloprotease (MMP), tumour necrosis factorα- converting enzyme (TACE) and a disintegrin and metalloproteinase (ADAM), with an IC ₅₀ of 20 µM for MMP ^[1] . TAPI-2 blocks the entry of infectious SARS-CoV ^[2] .	
IC ₅₀ & Target	ΜΜΡ 20 μΜ (IC ₅₀)	
In Vitro	The hydroxamate-based metalloprotease inhibitor TAPI-2 bounds to hmeprin with inhibition constants IC $_{50}$ 20±10 μ M for	

hmeprin β subunit and 1.5±0.27 nM for hmeprin α subunit. Generally, hmeprin α is inhibited more strongly than the β subunit^[1]. Without affecting ADAM17 expression, TAPI-2 dramatically decreases the protein levels of NICD and its downstream target HES-1 in both HCP-1 and HT29 cells. Moreover, treating cells with TAPI-2 significantly decreases the CSC phenotype by -50% in both CRC cell lines. The dose-dependent effects of TAPI-2 on the sphere formation and protein levels of NICD and HES-1 confirm that the concentration used (20 μ M) is within the effective dose range of TAPI-2 (5-40 μ M)^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay^[3]

TAPI-2 is dissolved in DMSO and diluted with appropriate medium before use. All experiments are performed using 20 μ M TAPI-2. Cells are cultured with or without TAPI-2 for 48 hours and then seeded at 3,000 cells per well in 96-well plates. After pretreatment, increasing doses of 5-fluorouracil (5-FU) that are relevant to the recommended clinical dose (up to 2 μ g/mL) are added, with or without TAPI-2, for 72 hours. Cell viability is assessed by adding MTT substrate (0.25% in phosphate-buffered saline [PBS]) in growth medium (1:5 dilution) to cells for 1 hour at 37°C. The cells are ished with PBS, and 100 μ L of dimethyl sulfoxideis added. Optical density is measured at 570 nM, and relative MTT is presented as a percentage of control [3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nucleic Acids Res. 2021 Jan 8;49(D1):D1113-D1121.
- J Exp Clin Canc Res. 2020 Jul 29;39(1):145.
- Clin Sci (Lond). 2019 Mar 1;133(5):611-627.
- J Cell Biochem. 2018 Mar;119(3):2911-2922.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Kruse MN, et al. Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J. 2004 Mar 1;378(Pt 2):383-9.

[2]. Wang R, et al. A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling. Stem Cells Transl Med. 2016 Mar;5(3):331-8.

[3]. Shiori Haga, et al. TACE Antagonists Blocking ACE2 Shedding Caused by the Spike Protein of SARS-CoV Are Candidate Antiviral Compounds. Antiviral Res. 2010 Mar;85(3):551-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

98 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA