Proteins

Inhibitors

Product Data Sheet

TAN-67 dihydrobromide

Cat. No.: HY-101317

CAS No.: 1217628-73-3 Molecular Formula: $C_{23}H_{26}Br_{2}N_{2}O$

Molecular Weight: 506.27

Target: **Opioid Receptor**

Pathway: GPCR/G Protein; Neuronal Signaling

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description TAN-67 (SB-205607) dihydrobromide is a potent and selective nonpeptidic δ -opioid receptor agonist with a K_i value of 0.647 nM. TAN-67 dihydrobromide has neuroprotective effect. TAN-67 dihydrobromide can be used in research of ischemic stroke [1][2]

 $\delta \, \text{Opioid Receptor/DOR}$ IC₅₀ & Target

0.647 nM (Ki)

In Vitro TAN-67 (SB-205607) dihydrobromide has high potency (EC₅₀=1.72 nM) for the inhibition of forskolin-stimulated cAMP

> accumulation at human delta-opioid receptors expressed by intact Chinese hamster ovary cells but low potency (EC₅₀=1520 nM) at human mu-opioid receptors expressed by intact B82 mouse fibroblast cells^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

In Vivo TAN-67 (SB-205607; 1.5-4.5 mg/kg; i.v.; once) dihydrobromide reduces infarct volume in I/R-caused brain injury^[2].

TAN-67 (3 mg/kg; i.v.; once) dihydrobromide improves survival and neurobehavioral performance after I/R^[2].

TAN-67 (3 mg/kg; i.v.; once; adult C57BL/6J male mice) dihydrobromide increases both total APP and mature APP (APPm)

levels and APP processing at an early time point $(6 \text{ h})^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Adult C57BL/6J male mice with I/R-caused brain injury ^[2]
Dosage:	1.5, 3.0, and 4.5 mg/kg
Administration:	Intravenous injection; once
Result:	Reduced infarct volume in a dose-dependent manner.
Animal Model:	Adult C57BL/6J male mice with I/R-caused brain injury ^[2]
Dosage:	3.0 mg/kg
Administration:	Intravenous injection; once
Result:	Had rapidly functional recovery than the vehicle-treated mice.

	Reduced neuronal cell death.
Animal Model:	Adult C57BL/6J male mice with transient middle cerebra artery occlusion (MCAO) ischemi stroke model $^{[2]}$
Dosage:	3.0 mg/kg
Administration:	Intravenous injection; once
Result:	Increased both total APP and mature APP (APPm) levels. Reduced β-secretase activity.

REFERENCES

[1]. Knapp RJ, et, al. Properties of TAN-67, a nonpeptidic delta-opioid receptor agonist, at cloned human delta- and mu-opioid receptors. Eur J Pharmacol. 1995 Oct 15;291(2):129-34.

[2]. Min JW, et, al. The non-peptidic δ -opioid receptor agonist Tan-67 mediates neuroprotection post-ischemically and is associated with altered amyloid precursor protein expression, maturation and processing in mice. J Neurochem. 2018 Feb;144(3):336-347.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA