MCE ® MedChemExpress

Product Data Sheet

T0467

Cat. No.:HY-139308CAS No.:859518-94-8Molecular Formula: $C_{24}H_{26}F_3N_5$ Molecular Weight:441.49

Target: Mitochondrial Metabolism; PINK1/Parkin

Pathway: Metabolic Enzyme/Protease; Autophagy; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years
-80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 33.33 mg/mL (75.49 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2651 mL	11.3253 mL	22.6506 mL
	5 mM	0.4530 mL	2.2651 mL	4.5301 mL
	10 mM	0.2265 mL	1.1325 mL	2.2651 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.66 mM); Clear solution

BIOLOGICAL ACTIVITY

DescriptionT0467 activates parkin mitochondrial translocation in a PINK1-dependent manner in vitro. T0467 do not induce

mitochondrial accumulation of PINK1in dopaminergic neurons. T0467 is a potential compound for PINK1-Parkin signaling

activation, and can be used for parkinson's disease and related disorders research $^{[1]}$.

In Vitro T0467 (2.5-20 μM; 3 hours) stimulates the mitochondrial translocation of GFP-Parkinover 12 μM in HeLa/GFP-Parkin cells^[1].

When HeLa/GFP-Parkin cells are treated with 20 μ M T0467 for 3 h, GTP-Parkin is translocated to the mitochondria in

approximately 21% of cells^[1].

T0467 does not show obvious toxicity in Drosophila at concentrations <50 μ M. All cpds examined mitigated the PINK1 inactivation-mediated larval locomotion defects and mitochondrial morphological defects and reduced ATP production.

T0467 and KTP improved the mitochondrial Ca^{2+} response in Drosophila larval muscles [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Research Square Preprint. 2023 Dec 27

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Kahori Shiba-Fukushima, et al. A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. iScience. 2020 May 22;23(5):101048.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com