T-2513 hydrochloride

MedChemExpress

®

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-125930A 187793-52-8 C ₂₅ H ₂₈ ClN ₃ O ₅ 485.96 Topoisomerase; DNA/RNA Synthesis Cell Cycle/DNA Damage Please store the product under the recommended conditions in the Certificate of Analysis.	H_2N O C N H_2
---	---	--

BIOLOGICAL ACTIVITY				
Description	T-2513 hydrochloride is a selective topoisomerase I inhibitor. T-2513 hydrochloride binds covalently to and stabilizes the topoisomerase I-DNA complex and inhibits DNA replication and RNA synthesis, ultimately leading to cell death ^[1] .			
IC₅₀ & Target	Topoisomerase I			
In Vitro	SN-38 is the metabolite of T-2513 hydrochloride ^[1] . T-2513 hydrochloride has a broad cytotoxicity against a range of human tumor cell lines ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[2]			
	Cell Line:	WiDr, HT-29, SK-BR-3, MKN-1, SK-LU-1, LX-1, KB, and HeLaS3 cells		
	Concentration:	15.1-111.5 ng/mL		
	Incubation Time:	24 hours		
	Result:	Exhibited cytotoxicity against a panel of human tumor cell lines with GI ₅₀ s of 32.1, 97.6, 38.6, 15.6, 111.5, 15.1, 34.0, and 50.9 ng/mL for WiDr, HT-29, SK-BR-3, MKN-1, SK-LU-1, LX-1, KB, and HeLaS3 cells, respectively.		
In Vivo	T-2513 hydrochloride (1-100 mg/kg) shows Antitumor Activity against Walker-256 carcinoma ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	Rats bearing Walker-256 carcinoma ^[2]		
	Dosage:	1, 10, and 100 mg/kg		
	Administration:			
	Result:	The ED ₅₀ was 23 mg/kg.		

REFERENCES

[1]. Stephan A Veltkamp, et al. Clinical and pharmacologic study of the novel prodrug delimotecan (MEN 4901/T-0128) in patients with solid tumors. Clin Cancer Res. 2008 Nov 15;14(22):7535-44.

[2]. S Okuno, et al. Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128). Cancer Res. 2000 Jun 1;60(11):2988-95.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA