Spiramycin

Cat. No.: HY-100593 CAS No.: 8025-81-8 Molecular Formula: $C_{43}H_{74}N_{2}O_{14}$

Molecular Weight: 843.05

Bacterial; Parasite; Antibiotic Target:

Pathway: Anti-infection

Storage: Powder -20°C 3 years

2 years

-80°C In solvent 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 100 mg/mL (118.62 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1862 mL	5.9308 mL	11.8617 mL
	5 mM	0.2372 mL	1.1862 mL	2.3723 mL
	10 mM	0.1186 mL	0.5931 mL	1.1862 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (2.97 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (2.97 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (2.97 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Spiramycin (Rovamycin) is a macrolide antibiotic produced by Streptomyces ambofaciens with against bacteria and

Toxoplasma gondii activities, and also has antiparasitic effect. Spiramycin is composed of a 16-member lactone ring, on

which three sugars (mycaminose, forosamine, and mycarose) are attached^{[1][2]}.

IC₅₀ & Target Macrolide Toxoplasma

Page 1 of 2

In Vitro

Spiramycin (24 hours; 1-1000 μ M; T. gondii infected HeLa cells and HeLa cells) treatment reduces the cytotoxicity, and shows anti-Toxoplasma gondii activity, with IC₅₀ values of 189 μ M for HeLa cells; and 262 μ M for T. gondii-infected HeLa cells^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[3]

Cell Line:	T. gondii infected HeLa cells and HeLa cells
Concentration:	1-1000 μΜ
Incubation Time:	24 hours
Result:	Reduced the cytotoxicity.

In Vivo

Spiramycin (100 mg/kg; intraperitoneal injection; every day; for 4 days; female KM mice) treatment reduces the number of tachyzoites, and reduces hepatotoxicity and significantly enhances antioxidative effects. Spiramycin treatment also decreases in the degree of granulomatous inflammation in the liver^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	36 female KM mice with T.gondii ^[3]	
Dosage:	100 mg/kg	
Administration:	Intraperitoneal injection; every day; for 4 days	
Result:	The number of tachyzoites was significantly reduced. Reduced hepatotoxicity and significantly enhanced antioxidative effects. Granuloma and cyst formation were inhibitied.	

CUSTOMER VALIDATION

• Cell Prolif. 2021 Jan;54(1):e12953.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Nguyen HC, et al. Post-PKS tailoring steps of the spiramycin macrolactone ring in Streptomyces ambofaciens. Antimicrob Agents Chemother. 2013 Aug;57(8):3836-42.
- $[2]. \ Etewa SE, et al. \ Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. \ J Parasit Dis. 2018 \ Mar; 42(1):102-113.$
- [3]. Guo HY, et al. Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti-Toxoplasma gondii Agents. J Agric Food Chem. 2019 Aug 28;67(34):9630-9642.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA