Inhibitors

Siponimod

Cat. No.: HY-12355 CAS No.: 1230487-00-9 Molecular Formula: $C_{29}H_{35}F_3N_2O_3$ Molecular Weight: 516.6

Target: LPL Receptor Pathway: GPCR/G Protein

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 1 years; -20°C, 6 months (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 30 \text{ mg/mL} (58.07 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9357 mL	9.6787 mL	19.3573 mL
	5 mM	0.3871 mL	1.9357 mL	3.8715 mL
	10 mM	0.1936 mL	0.9679 mL	1.9357 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.84 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.84 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.84 mM); Clear solution
- 4. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: 1.67 mg/mL (3.23 mM); Suspended solution; Need ultrasonic
- 5. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline) Solubility: 1.67 mg/mL (3.23 mM); Suspended solution; Need ultrasonic
- 6. Add each solvent one by one: 1% DMSO >> 99% saline Solubility: 0.33 mg/mL (0.64 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Siponimod (BAF-312) is an orally active and selective sphingosine-1-phosphate (S1P) receptor modulator. Siponimod is

	selective for S1P ₁ and S1P ₅ over S1P ₂ , S1P ₃ , and S1P ₄ , with EC ₅₀ s of 0.4, 0.98, >10000, >1000, and 750 nM, respectively. Siponimod can be used for multiple sclerosis (MS) research ^{[1]-[4]} .						
IC ₅₀ & Target	S1PR1 0.39 nM (EC50)	S1PR5 0.98 nM (EC50)	S1PR4 750 nM (EC50)	S1PR3 >1000 nM (EC50)			
	S1PR2 >10000 nM (EC50)						
In Vitro	Siponimod (compound 32) exhibits selectivity to S1P ₁ and S1P ₅ , and spares activity on the S1P2, S1P3 and S1P4 receptors ^[1]						
	Siponimod (1 mM; 0-1 h) promotes internalization of S1P1 receptors, results 94% S1P1 receptors localized intracellularly at 1 $h^{[2]}$. Siponimod (0.001 nM-1 μ M; 1 h) activates the GIRK channel in atrial myocytes, with an EC ₅₀ value of 15.8 nM in CHO cell line CCL-61 ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.						
In Vivo	Siponimod (1 g/kg; i.v.; single dose) shows low to moderate in monkey, but high in rat in metabolism studies with liver microsomes. The absolute bioavailability is 50 and 71% in the rat and monkey, respectively, indicating no major presystemic first pass metabolism ^[1] . Siponimod (0.3, 3 mg/kg; p.o.; once daily; 23 d) suppresses experimental autoimmune encephalomyelitis (EAE) in rats by internalizing S1P1 receptors ^[2] . Parmacokinetics of Siponimod in rats and monkey ^[1]						
	/td>	CL (L/h/kg) V _{ss}	(L/kg) T _{1,}	_{/2} (h) F (%)			
	Rat	0.36	2.15	6 50			
	Monkey	0.098/td>	2.12	19 71			
	MCE has not independently confirmed the accuracy of these methods. They are for reference only.						
	Animal Model: Experimental autoimmune encephalomyelitis (EAE) model in Lewis rats (200-250 g) ^[2]						
	Dosage:	0.03, 0.3, 3 mg/kg					
	Administration:	Oral gavage; once daily; 23 days					
	Result: Decreased peripheral lymphocyte counts by 88% at the T _{max of 8 h postadministration} .						

CUSTOMER VALIDATION

- Theranostics. 2023 Feb; 13(4):1217-1234.
- Proc Natl Acad Sci U S A. 2019 May 21;116(21):10557-10562.

• Aging Dis. 2022.

Page 2 of 3

- Vet Microbiol. 2021, 109177.
- Neurosci Res. 5 August 2022.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Behrangi N, et al. Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. Cells. 2019 Jan 7;8(1):24.
- [2]. Gergely P, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol. 2012 Nov;167(5):1035-47.
- [3]. Pan S, et al. Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. ACS Med Chem Lett. 2013 Jan 4;4(3):333-7.
- [4]. McGinley M, et al. Prospects of siponimod in secondary progressive multiple sclerosis. Ther Adv Neurol Disord. 2018 Jul 17;11:1756286418788013.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com