Product Data Sheet

Silvestrol

Cat. No.: HY-13251 697235-38-4 CAS No.: Molecular Formula: $C_{34}H_{38}O_{13}$ Molecular Weight: 654.66

Target: Eukaryotic Initiation Factor (eIF); Apoptosis; Autophagy

Pathway: Cell Cycle/DNA Damage; Apoptosis; Autophagy

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 1 year

> -20°C 6 months

SOLVENT & SOLUBILITY

In Vitro

DMSO: \geq 6.6 mg/mL (10.08 mM)

 $H_2O: < 0.1 \text{ mg/mL (insoluble)}$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.5275 mL	7.6376 mL	15.2751 mL
	5 mM	0.3055 mL	1.5275 mL	3.0550 mL
	10 mM	0.1528 mL	0.7638 mL	1.5275 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Silvestrol is formulated in 30% 2-hydroxypropyl-β-cyclodextrin^[8].
- 2. Silvestrol is prepared in 5.2% Tween 80 5.2% PEG $400^{[6]}$.
- 3. Silvestrol is dissolved in 20%(w/v) 2-hydroxyproply beta-cyclodextrin vehicle at a concentration of $125 \mu g/mL$ and injected into mice i.p.^[7].

BIOLOGICAL ACTIVITY

induces autophagy and caspase-mediated apoptosis	A (eIF4A) inhibitor isolated from Agave americana Linn Silvestrol 1][2][3]
IC ₅₀ & Target eIF4	

Silvestrol is a specific eIF4A-targeting translation inhibitor. Silvestrol exhibits significant cytotoxic activity against many human cancer cell lines, such as lung, prostate, and breast cancer with IC $_{50}$ values ranging from 1 to 7 nM $^{[1]}$.

In Vitro

?Silvestrol significantly reduces the number of LNCaP cell colonies. Silvestrol (30 nM, 120 nM) induces apoptosis in LNCaP cells, through the mitochondrial pathway. Apaf-1, Caspase-2, caspase-9, and caspase-10 are involved in Silvestrol-induced apoptosis but caspase-3 and 7 are not^[2].

?Silvestrol induces caspase-3 activation and apoptotic cell death in a time- and dose-dependent manner. Silvestrol-mediated cell death is attenuated in ATG7-null mouse embryonic fibroblasts (MEFs) lacking a functional autophagy protein [3]

?Silvestrol (50 nM) exerts an immediate inhibitory effect and causes near-static cell index compared with the control cells. Silvestrol (6.25 nM) enhances proliferation more than the vehicle control-treated cells, whereas a higher concentration of Silvestrol (50 nM) can inhibit cell proliferation. Silvestrol and episilvestrol display synergistic effects in combination with CDDP^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Silvestrol (1.5 mg/kg, i.p.) does not adversely affect production of human IgG by xenografted B-lymphocytes in mice. Silvestrol significantly prolongs survival compared to vehicle. There is no such lymphocyte infiltration detected in the spleens of any of the Silvestrol-treated mice, and nor do these animals exhibit any other obvious signs of lymphoma upon necropsy^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [2]

The cells are seeded at a density of 7×10^4 cells/mL in 100-mm culture dishes and are treated with 30 nM or 120 nM concentrations of Silvestrol for 24 h^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration ^[5]

Mice^[5]

Peripheral blood mononuclear cells (PBMC) are injected intraperitoneally (IP) into SCID mice depleted of murine natural killer (NK) cells by pretreatment (plus weekly re-treatment) with anti-asialo (GM1). Engraftment is confirmed by hu-IgG ELISA. Treatments with vehicle (30% hydroxypropyl-β-cyclodextrin) or Silvestrol (1.5 mg/kg every 48 hr IP) begin 2 weeks post-engraftment^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nature. 2014 Sep 4;513(7516):65-70.
- Cancer Discov. 2015 Jul;5(7):768-81.
- Blood. 2014 Dec 11;124(25):3758-67.
- Nat Commun. 2019 Jul 1;10(1):2901.
- Mol Cell. 2022 May 5;S1097-2765(22)00327-6.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Chambers JM, et al. Synthesis of biotinylated episilvestrol: highly selective targeting of the translation factors eIF4AI/II. Org Lett. 2013 Mar 15;15(6):1406-9.

[2]. Kim S, et al. Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7. Anticancer Res. 2007 Jul-Aug;27(4B):2175-83.

- [3]. Chen WL, et al. Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer. 2016 Jan 13;16:17.
- [4]. Daker M, et al. Inhibition of nasopharyngeal carcinoma cell proliferation and synergism of CDDP with silvestrol and episilvestrol isolated from Aglaia stellatopilosa. Exp Ther Med. 2016 Jun;11(6):2117-2126.
- [5]. Patton JT, et al. The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease. Oncotarget. 2015 Feb 20;6(5):2693-708.
- [6]. Wolfe AL, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014 Sep 4;513(7516):65-70.
- [7]. Wiegering A, et al. Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer. Cancer Discov. 2015 Jul;5(7):768-781.
- [8]. Todt D, et al. The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antiviral Res. 2018 Sep;157:151-158.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA