

Product Data Sheet

Silodosin

Cat. No.: HY-10122 CAS No.: 160970-54-7Molecular Formula: $C_{25}H_{32}F_3N_3O_4$ Molecular Weight: 495.53

Target: Adrenergic Receptor; Bacterial

Pathway: GPCR/G Protein; Neuronal Signaling; Anti-infection

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 50 \text{ mg/mL} (100.90 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0180 mL	10.0902 mL	20.1804 mL
	5 mM	0.4036 mL	2.0180 mL	4.0361 mL
	10 mM	0.2018 mL	1.0090 mL	2.0180 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.05 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.05 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.05 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Silodosin (KAD 3213; KMD 3213) is a potent, selective and orally active α 1A-adrenergic receptor (α 1A-AR) blocker. Silodosin exhibits high affinity for α 1A-AR (K_i =0.036 nM), over 162-fold and 50-fold than for α 1B-AR and α 1D-AR with K_i values of 21 nM and 2.0 nM, respectively. Silodosin is an effective and well-tolerated agent, it can be used for the investigation of LUTS/BPH [1][3]

IC₅₀ & Target

Ki: 0.036 nM (α1A-AR); 21 nM (α1B-AR); 2 nM (α1D-AR)^[1]

In Vitro

Silodosin (KAD 3213; KMD 3213) inhibits norepinephrine-induced increases in intracellular Ca^{2+} concentrations in alpha 1a-AR-expressing Chinese hamster ovary cells with an IC_{50} of 0.32 nM but had a much weaker inhibitory effect on the alpha 1b-and alpha 1d-ARs^[1].

Silodosin potently inhibits 2-[2-(4-hydroxy-3-[125I]iodophenyl)ethylaminomethyl]-alpha-tetralone binding to the cloned human alpha 1a-AR, with a K_i value of 0.036 nM, but has 583- and 56-fold lower potency at the alpha 1b- and alpha 1d-ARs, respectively^[2].

Silodosin (0-10 μ M; 24 hours) decreases ELK1 gene expression as a dose-dependent manner in all the bladder cancer cell lines^[4].

Silodosin (0-10 µM; 24 hours) decreases ELK1 protein expression as a as a dose-dependent manner^[4].

Silodosin (0-10 μ M; 96 hours) insignificantly changes cell viability of AR-positive UMUC3 or TCCSUP cultured in an androgen-depleted condition or that of AR-negative 647V. In contrast, silodosin reduced the growth of UMUC3 cells cultured with normal FBS containing androgens (58% decrease at 10 μ M)^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

RT-PCR^[4]

Cell Line:	TCCSUP; UMUC3 and 647V cells	
Concentration:	0.1, 0.5, 3.0, or 10 μM	
Incubation Time:	24 hours	
Result:	Decreases ELK1 in bladder cancer cells.	
Western Blot Analysis ^[4]		
Cell Line:	TCCSUP; UMUC3 and 647V cells	
Concentration:	0.1, 0.5, 3.0, or 10 μM	
Incubation Time:	24 hours	
Result:	Decreases ELK1 in bladder cancer cells.	
Cell Proliferation Assay ^{[,}	4]	
Cell Line:	UMUC3,TCCSUP or AR-negative 647V cells	
Concentration:	0.1, 0.5, 3.0, or 10 μM	
Incubation Time:	96 hours	
Result:	Decreased cell viability of UMUC3 cells cultured with normal FBS containing androgens	

In Vivo

Silodosin (intravenous injection; 0.1-0.3mg/kg) reduces the obstruction-induced increases in MinP by 27.7 % (0.1 mg/kg) and 20.8 %(0.3 mg/kg). It improves detrusor overactivity and reduces the grade of obstruction, and thus may be effective for both storage and voiding dysfunction for the treatment of LUTS/BPH^[2].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

(58% decrease).

Animal Model:	Sprague Dawley rats ^[2]	
Dosage:	0.1-0.3mg/kg	
Administration:	Intravenous injection	
Result:	Effectively reduced contractions of both human and rat isolated ureters.	

CUSTOMER VALIDATION

• Eur J Pharmacol. 2018 Nov 15;839:82-88.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Maxime Rossi , Silodosin in the treatment of benign prostatic hyperplasia. Drug Des Devel Ther. 2010; 4: 291–297.
- [2]. Villa L, et al. Effects by silodosin on the partially obstructed rat ureter in vivo and on human and rat isolated ureters. Br J Pharmacol. 2013 May;169(1):230-8.
- [3]. Osman NI, et al. Silodosin: a new subtype selective alpha-1 antagonist for the treatment of lower urinary tract symptoms in patients with benign prostatic hyperplasia. Expert Opin Pharmacother. 2012 Oct;13(14):2085-96.
- [4]. Kawahara T, et al. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via ELK1 inactivation. Am J Cancer Res. 2015 Sep 15;5(10):2959-68. eCollection 2015.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA