Product Data Sheet

ST1936 oxalate

Molecular Weight:

Cat. No.: HY-103110A CAS No.: 1782228-83-4 Molecular Formula: $C_{15}H_{19}CIN_{2}O_{4}$

Target: 5-HT Receptor; Adrenergic Receptor Pathway: GPCR/G Protein; Neuronal Signaling

326.78

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	ST1936 oxalate is a selective, nanomolar affinity 5-HT $_6$ receptor agonist with K $_i$ values of 13 nM, 168 nM and 245 nM for human 5-HT $_6$, 5-HT $_7$ and 5-HT $_{2B}$ receptors, respectively. ST1936 oxalate also shows moderate affinity (K $_i$ of 300 nM) for human and rat α 2 adrenergic receptor ^[1] .					
IC ₅₀ & Target	5-HT ₆ Receptor 13 nM (Ki)	Human 5-HT ₇ Receptor 168 nM (Ki)	5-HT _{2B} Receptor 245 nM (Ki)	α1-adrenergic receptor 390 nM (Ki, rat)		
	α2-adrenergic receptor 300 nM (Ki, rat)	α2-adrenergic receptor 300 nM (Ki, human)				
In Vitro	ST1936 oxalate appears to be relatively selective for 5-HT $_6$ receptors, although it has shown affinity also for 5-HT $_{2B}$, 5-HT $_{1A}$, 5-HT $_7$ receptor and α -adrenergic receptors when tested in a broad crossreactivity panel that comprised G-protein-coupled receptors, ion channel binding sites, enzymes, and transporters $^{[1]}$. ST1936 oxalate behaves as a full 5-HT $_6$ agonist on cloned cells and is able to increase Ca $^{2+}$ concentration, phosphorylation of Fyn kinase, and regulate the activation of ERK1/2 that is a downstream target of Fyn kinase $^{[2]}$. ST1936 oxalate reduces the frequency of spontaneous excitatory postsynaptic currents, with an IC $_{50}$ of 1.3 μ M $^{[3]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
In Vivo	ST1936 (5, 10, 20 mg/kg; i.p.) oxalate increases in a dose dependent manner extracellular dopamine (DA) and NA levels in the prefrontal cortex (PFCX) ^[2] . ST1936 (5, 10, 20 mg/kg; i.p.) oxalate increases extracellular DA and NA levels in the nucleus accumbens (NAc) core. Doses of 10 mg/kg increases dialysate DA (peak: 179%) while higher dose increases both DA and NA dialysates (201% and 231%, respectively). Doses of 5 mg/kg does not produce any effect ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					

REFERENCES

- [1]. Borsini F, et al. Effects of ST1936, a selective serotonin-6 agonist, on electrical activity of putative mesencephalic dopaminergic neurons in the rat brain. J Psychopharmacol. 2015 Jul;29(7):802-11.
- [2]. Riccioni T, et al. ST1936 stimulates cAMP, Ca2+, ERK1/2 and Fyn kinase through a full activation of cloned human 5-HT6 receptors. Eur J Pharmacol. 2011;661(1-3):8-14.
- [3]. Tassone A, et al. Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission. Neuropharmacology. 2011;61(4):632-637.

[4]. Valentini V, et al. A microdialysis study of ST1936, a novel 5-HT6 receptor agonist. Neuropharmacology. 2011;60(4):602-608.							
			l applications. For research use o				
		Fax: 609-228-5909 Park Dr, Suite Q, Monmouth	E-mail: tech@MedChemExpress.c Junction, NJ 08852, USA	om			

Page 2 of 2 www.MedChemExpress.com