Screening Libraries

SSK1

Cat. No.: HY-138936 CAS No.: 2629250-69-5 Molecular Formula: $C_{31}H_{34}F_{2}N_{4}O_{18}$

Molecular Weight: 788.61

Target: Apoptosis; p38 MAPK

Pathway: Apoptosis; MAPK/ERK Pathway

4°C, sealed storage, away from moisture and light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 200 mg/mL (253.61 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.2681 mL	6.3403 mL	12.6805 mL
	5 mM	0.2536 mL	1.2681 mL	2.5361 mL
	10 mM	0.1268 mL	0.6340 mL	1.2681 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 5 mg/mL (6.34 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 5 mg/mL (6.34 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

SSK1, a senescence-specific killing compound, is a β -galactosidase-targeted proagent attenuates inflammation. SSK1 is activated by lysosomal β-galactosidase and selectively killed senescent cells through the activation of p38 MAPK and induction of apoptosis^[1].

In Vitro

SSK1 (0.5 μM; 12-72 hours) activates the phosphorylation levels of both p38 MAPK and MKK3/MKK6 in senescent cells. SSK1 kills senescent cells through the activation of the p38 MAPK signaling pathway. SSK1 is able to induce mitochondrial DNA damage in senescent cells^[1].

SSK1 (0.01-1 μ M; 3 days) selectively and potently eliminates β -galactosidase-positive senescent cells within a wide therapeutic window^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[1]

Cell Line:	Primary mouse fibroblasts	
Concentration:	0.5 μΜ	
Incubation Time:	12 hours, 24 hours, 36 hours, 48 hours, 72 hours	
Result:	Both p38 MAPK and MKK3/MKK6 were activated by phosphorylation in senescent cells.	

In Vivo

SSK1 (0.5 mg/kg; i.p.; two days every week; for four weeks) could eliminate senescent cells and decrease senescence-associated markers in lung-injured mice $^{[1]}$.

In aged mice (20-month-old), SSK1 (0.5 mg/kg; 3 days every 2 weeks for 8 weeks) effectively clears senescent cells in different tissues, decreases the senescence- and age-associated gene signatures, attenuates low-grade local and systemic inflammation, and restores physical function^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	Mice (3-6-month-old) were subjected to transtracheal injection of Bleomycin $^{[1]}$	
Dosage:	0.5 mg/kg	
Administration:	Intraperitoneally injection; two days every week; for four weeks	
Result:	SSK1 significantly reduced the percentage of SA-β-gal-positive cells in lung by 3.8-fold compared with that in vehicle-treated lung-injured mice	

REFERENCES

[1]. Yusheng Cai, et al. Elimination of senescent cells by β -galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020 Jul;30(7):574-589.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA