Proteins

SR59230A hydrochloride

Cat. No.: HY-103200 CAS No.: 1135278-41-9 Molecular Formula: C₂₁H₂₈ClNO₂ Molecular Weight: 361.91

Target: Adrenergic Receptor

Pathway: GPCR/G Protein; Neuronal Signaling Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

DMSO: 250 mg/mL (690.78 mM; Need ultrasonic) In Vitro

H₂O: 2.5 mg/mL (6.91 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7631 mL	13.8156 mL	27.6312 mL
	5 mM	0.5526 mL	2.7631 mL	5.5262 mL
	10 mM	0.2763 mL	1.3816 mL	2.7631 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.75 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (5.75 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.75 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	SR59230A hydrochloride is a potent, selective, and blood-brain barrier penetrating β 3-adrenergic receptor antagonist ^[1] with IC ₅₀ s of 40, 408, and 648 nM for β 3, β 1, and β 2 receptors, respectively ^[2] .	
IC ₅₀ & Target	β adrenergic receptor	
In Vitro	SR59230A (100 nM-50 μ M; 24 hours) is able to reduce cell viability in a dose-dependent manner? in Neuro-2A, BE(2)C and SK-N-BE(2) NB cell lines ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

Cell Viability Assay ^[3]		
Cell Line:	Three different neuroblastoma (NB) cell lines, one murine (Neuro-2A) and two human (SK-N-BE(2), BE(2)C)	
Concentration:	100 nM, 1 μM, 5 μM, 10 μM, and 50 μM	
Incubation Time:	24 hours	
Result:	Reduced cell viability in a dose-dependent manner, with significant effect at a concentration limit over 1 μ M for Neuro-2A cells and 5 μ M for SK-N-BE(2) and BE(2)C).	

In Vivo

MDMA (20 mg/kg) produces a slowly developing hyperthermia, reaching a maximum increase of 1.8° C at 130 min post injection. ?SR59230A (0.5 mg/kg) produces a small but significant attenuation of the slowly developing hyperthermia to MDMA. SR59230A (5 mg/kg) reveals a significant and marked early hypothermic reaction to MDMA^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male C-57BL6J wild-type mice (22-35 g) ^[4]
Dosage:	0.5 or 5 mg/kg
Administration:	Injected s.c.; administered 30 min prior to the injection s.c. of MDMA (20 mg/kg).
Result:	Modulated the actions of MDMA on temperature involve $lpha 1$ -adrenoceptor antagonism.

CUSTOMER VALIDATION

- Nat Commun. 2023 May 2;14(1):2523.
- Nat Commun. 2022 Jun 13;13(1):3394.
- Int J Obes. 2022 May 20.
- J Funct Foods. 2023 Apr.
- Food Nutr Res. 2021, 65: 7577.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Nisoli E, et al. Functional studies of the first selective beta 3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol Pharmacol. 1996 Jan;49(1):7-14.
- $[2]. \ Kanzler SA, et al. \ Involvement of \beta 3-adrenergic \ receptors \ in the control of food intake in rats. Braz \ J \ Med \ Biol \ Res. \ 2011 \ Nov; 44(11):1141-7.$
- [3]. Bruno G, et al. β 3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P2 modulation. Oncogene. 2020 Jan;39(2):368-384.
- [4]. Bexis S, et al. Role of alpha 1- and beta 3-adrenoceptors in the modulation by SR59230A of the effects of MDMA on body temperature in the mouse. Br J Pharmacol. 2009 Sep;158(1):259-66.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com