Proteins

SPD304

Cat. No.: HY-111255 CAS No.: 869998-49-2 Molecular Formula: $C_{32}H_{32}F_3N_3O_2$ Molecular Weight: 547.61

Target: **TNF** Receptor Pathway: **Apoptosis**

Storage: Pure form -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (45.65 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8261 mL	9.1306 mL	18.2612 mL
	5 mM	0.3652 mL	1.8261 mL	3.6522 mL
	10 mM	0.1826 mL	0.9131 mL	1.8261 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (2.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 1.25 mg/mL (2.28 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.25 mg/mL (2.28 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	SPD304 is a selective TNF- α inhibitor, which promotes dissociation of TNF trimers and therefore blocks the interaction of TNF and its receptor. SPD304 has an IC ₅₀ of 22 μ M for inhibiting in vitro TNF receptor 1 (TNFR1) binding to TNF- α ^{[1][2]} .
IC ₅₀ & Target	IC50: 22 μ M (TNF α) $^{[1]}$.
In Vitro	SPD304 (2 μ M) significantly rescues the survivability of aHSCs, reduces the production of lipid hydroxides, and increased intracellular GSH. The co-treatment of GA (75 μ M) and SPD304 (2 μ M), down-regulate TRADD almost 2-fold (w/o inhibitor vs.

	w/ inhibitor) and p-RIP3 1.4-fold compared to GA alone, and promotes caspase 8 activation ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	SPD304 cannot be used in vivo due to its high toxicity ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

CUSTOMER VALIDATION

- Cell Death Dis. 2020 Dec 11;11(12):1050.
- Aging Cell. 2020 Oct;19(10):e13217.
- FEBS J. 2021 Dec 17.
- Anal Bioanal Chem. 2023 Jan 31.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Molly M. He, et al. Small-Molecule Inhibition of TNF- α . Science 11 Nov 2005.
- [2]. Alexiou P, et al. Rationally designed less toxic SPD-304 analogs and preliminary evaluation of their TNF inhibitory effects. Arch Pharm (Weinheim). 2014 Nov;347(11):798-805.
- [3]. Mouhsine H, et al. Identification of an in vivo orally active dual-binding protein-protein interaction inhibitor targeting TNF α through combined in silico/in vitro/in vivo screening. Sci Rep. 2017 Jun 13;7(1):3424.
- [4]. Gallic acid induces necroptosis via TNF-α signaling pathway in activated hepatic stellate cells. Chang YJ, et al. PLoS One. 2015 Mar 27;10(3):e0120713.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com