

Product Data Sheet

SNAP 94847 hydrochloride

Cat. No.: HY-107625A CAS No.: 1781934-47-1 Molecular Formula: $C_{29}H_{33}ClF_{2}N_{2}O_{2}$

Molecular Weight: 515.03

Target: MCHR1 (GPR24)

Pathway: GPCR/G Protein; Neuronal Signaling Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (485.41 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (ultrasonic; warming; heat to 60°C) (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9416 mL	9.7082 mL	19.4163 mL
	5 mM	0.3883 mL	1.9416 mL	3.8833 mL
	10 mM	0.1942 mL	0.9708 mL	1.9416 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.04 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (4.04 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.04 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	SNAP 94847 hydrochloride is a novel, high affinity selective melanin-concentrating hormonereceptor1 (MCHR1) antagonist with (K_i = 2.2 nM, K_d =530 pM), it displays >80-fold and >500-fold selectivity over MCH α 1A and MCHD2 receptors respectively. SNAP 94847 hydrochloride binds with high affinity to the mouse and rat MCHR1 with minimal cross-reactivity to other GPCR, ion channels, enzymes, and transporters ^{[1][3]} .
IC ₅₀ & Target	Ki: 2.2 nM (MCHR1); Kd: 530 pM (MCHR1) ^[3]
In Vivo	SNAP 94847 hydrochloride (oral gavage; 20 mg/kg; 14 days) shows an exaggerated locomotor response to acute quinpirole

[treatment: F(2,19)=11.31, treatment × time: F(34,323)=4.061], the effect of SNAP 94847 on quinpirole-evoked ambulations over the entire observation period is significant compared to the untreated animals^[2].

SNAP 94847 hydrochloride (oral administration; 20 mg/kg; 21 days) in drink water, produces a significant increase in ambulation relative to untreated animals [treatment: F(3,28) = 8.971; treatment × time: F(51,476) = 11.50]. shows a marked increase in locomotion is apparent after 40 min in the SNAP 94847-treated group, this effect is significant over 180 min^[2]. SNAP 94847 hydrochloride (oral administration; 10 mg/kg), has a good bioavailability (59%), low plasma and blood clearances of 4.2 L/hr/kg and 3.3 L/hr/kg, respectively, and the half-life was shown to be 5.2 h in rats in a PK study^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Rat ^[2]	
Dosage:	20 mg/kg	
Administration:	Oral administration; 20 mg/kg; 14 days	
Result:	Exhibited a exaggerated locomotor response to acute quinpirole.	
Animal Model:	Rat ^[2]	
Dosage:	10 mg/kg	
Administration:	Oral administration; 10 mg/kg	
Result:	Exhibited good physicochemical properties in rats.	

CUSTOMER VALIDATION

• Research Square Preprint. 2021 Sep.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. David DJ, et al. Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther. 2007 Apr;321(1):237-48. Epub 2007 Jan 19.

[2]. Nair SG, et al. Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology (Berl). 2009 Jul; 205(1):129-40.

[3]. Chen CA, et al. Synthesis and SAR investigations for novel melanin-concentrating hormone 1 receptor (MCH1) antagonists part 2: A hybrid strategy combining key fragments of HTS hits. J Med Chem. 2007 Aug 9;50(16):3883-90.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA