Product Data Sheet

SKA-31

Cat. No.: HY-111655 CAS No.: 40172-65-4 Molecular Formula: $C_{11}H_8N_2S$ Molecular Weight: 200.26

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder -20°C 3 years In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (624.19 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.9935 mL	24.9675 mL	49.9351 mL
	5 mM	0.9987 mL	4.9935 mL	9.9870 mL
	10 mM	0.4994 mL	2.4968 mL	4.9935 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (12.48 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (12.48 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: 2.08 mg/mL (10.39 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	SKA-31 is a potent potassium channel activator with EC _{50s} of 260 nM, 1.9 μ M, 2.9 μ M, and 2.9 μ M for KCa3.1, KCa2.2, KCa2.1 and KCa2.3, respectively. SKA-31 potentiates endothelium-derived hyperpolarizing factor response and lowers blood pressure ^[1] .	
IC ₅₀ & Target	EC50: 2.9 μ M (KCa2.1), 1.9 μ M (KCa2.2), 2.9 μ M (KCa2.3), 260 nM (KCa3.1) [1]	
In Vitro	SKA-31 activates KCa2/3 channels more potently than PK 26124, and is more selective over other Ion channels [1]. SKA-31 reduces cell viability with IC $_{50s}$ of 5.3 μ M , 46.9 μ M in HCT-116 cells and HCT-8 cells, respectively [2].	

SKA-31 (5.3 μ M; 0-96 hours) reduces HCT-116 cells proliferation when added at time zero at 5.3 μ M[2].

SKA-31 triggers apoptosis in HCT-116 cells at 5 μ M, and the effect is smaller in HCT-8 cells at 45 μ M $^{[2]}$.

SKA-31 increases the percentage of cells in G0/G1 phase in HCT-116 and HCT-8 cell lines at 5 μ M and 45 μ M, respectively [2].

SKA-31 further activates Caspase 3 and reduces Akt phosphorylation induced by CDDP^[2].

SKA-31 has a synergic effect with CDDP also on the inhibition of HCT-116 cell proliferation $^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell viability Assayi-		
Cell Line:	HCT-116 cells, HCT-8 cells	
Concentration:		
Incubation Time:	24 hours	
Result:	Reduced cell viability with IC $_{50s}$ of 5.3 μM , 46.9 μM in HCT-116 and HCT-8, respectively.	
Cell Proliferation Assay [[]	2]	
Cell Line:	HCT-116 cells	
Concentration:	5.3 μM	
Incubation Time:	0-96 hours	
Result:	Reduced HCT-116 cells proliferation when added at time zero at IC_{50S} value.	
Apoptosis Analysis ^[2]		
Cell Line:	HCT-116 cells, HCT-8 cells	
Concentration:	5 μM (HCT-116 cells), 45 μM (HCT-8 cells)	
Incubation Time:	24 hours	
Result:	Triggered apoptosis in HCT-116 cells, and the effect was smaller in HCT-8 cells.	
Cell Cycle Analysis ^[2]		
Cell Line:	HCT-116 cells, HCT-8 cells	
Concentration:	5 μM (HCT-116), 45 μM (HCT-8)	
Incubation Time:	24 hours	
Result:	Increased the percentage of cells in G0/G1 phase in HCT-116 and HCT-8 cell lines.	
Western Blot Analysis ^[2]		
Cell Line:	HCT-116 cells	
Concentration:		
Incubation Time:	24 hours	
Result:	Further activated Caspase 3 and reduced Akt phosphorylation when co-treatment with CDDP in HCT-116 cells.	

In Vivo

SKA-31 is not acutely toxic and has good pharmacokinetic properties $^{[1]}$.

SKA-31 potentiates native KCa3.1 and KCa2.3 in murine carotid endothelium with EC $_{50}$ values of 225 nM and 1.6 μM for

KCa3.1 and KCa2.3, respectively^[1].

SKA-31 stimulates KCa3.1 and KCa2.3 in vascular endothelial cells and increases acetylcholine-induced endothelium-derived hyperpolarizing factor (EDHF) -mediated vasodilation^[1].

SKA-31 potentiates EDHF-type vasodilations and lowers blood pressure in mice. Injections of SKA-31 (1-30 mg/kg; i.p.) lower MAP over 24 hours in normotensive wild-type mice but not in KCa3.1(-/-) mice $(-/-)^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	16-25 weeks mice $^{[1]}$	
Dosage:	1 mg/kg, 10 mg/kg, and 30 mg/kg	
Administration:	Intraperitoneal injection	
Result:	Lower MAP over 24 hours in normotensive wild-type mice but not in KCa3.1(-/-) mice (-/-).	

CUSTOMER VALIDATION

• Front Physiol. 2021 Mar 9;12:639857.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Sankaranarayanan A, et al. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol. 2009 Feb;75(2):281-95

[2]. Serena Pillozzi, et al. The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome CDDP resistance in colorectal cancer cells. Br J Cancer. 2018 Jan; 118(2): 200–212.

Caution: Product has not been fully validated for medical applications. For research use only.

E-mail: tech@MedChemExpress.com

Tel: 609-228-6898 Fax: 609-228-5909

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA