SCH79797 dihydrochloride

Cat. No.:	HY-14994		
CAS No.:	1216720-69-2	\mathbf{Y}	
Molecular Formula:	$C_{23}H_{27}Cl_2N_5$		
Molecular Weight:	444.4	N N	
Target:	Protease Activated Receptor (PAR); Apoptosis	N N	
Pathway:	GPCR/G Protein; Apoptosis	H-CI	λ
Storage:	4°C, sealed storage, away from moisture	H-CI	,
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)		

SOLVENT & SOLUBILITY

In Vitro

DMSO : 22 mg/mL (49.50 mM; Need ultrasonic and warming) Ethanol : 11 mg/mL (24.75 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2502 mL	11.2511 mL	22.5023 mL
	5 mM	0.4500 mL	2.2502 mL	4.5005 mL
	10 mM	0.2250 mL	1.1251 mL	2.2502 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY				
Description	SCH79797 dihydrochloride is a highly potent, selective nonpeptide protease activated receptor 1 (PAR1) antagonist. SCH79797 dihydrochloride inhibits binding of a high-affinity thrombin receptor-activating peptide to PAR1 with an IC ₅₀ of 70 nM and a K _i of 35 nM. SCH79797 dihydrochloride inhibits thrombin-induced platelet aggregation with an IC ₅₀ of 3 μM. SCH79797 dihydrochloride has antiproliferative and pro-apoptotic effects, and limits myocardial ischemia/reperfusion injury in rat hearts. SCH79797 dihydrochloride also potently prevents PAR1 activation in vascular smooth muscle cells, endothelial cells, and astrocytes ^{[1][2][3][4]} .			
IC ₅₀ & Target	Protease activated receptor 1 (PAR1) ^[1] ; Apoptosis ^[3]			
In Vitro	SCH79797 inhibits high-affinity thrombin receptor-activating peptide ([³ H]haTRAP) binding in a competitive manner. SCH79797 inhibits α-thrombin- and haTRAP-induced aggregation of human platelets, but does not inhibit human platelet aggregation induced by the tethered ligand agonist for protease-activated receptor-4 (PAR-4), γ-thrombin, ADP, or collagen. Thrombin produces transient increases in cytosolic free Ca ²⁺ concentration ([Ca ²⁺] _i) in hCASMC. SCH79797 effectively inhibits this increase in [Ca ²⁺] _i . SCH79797 completely inhibits Thrombin- and TK-stimulated [³ H]thymidine incorporation ^[1] . SCH79797 is able to interfere with the growth of several human and mouse cell lines, in a concentration-dependent manner. The ED ₅₀ for growth inhibition iss 75 nM, 81 nM and 116 nM for NIH 3T3, HEK 293 and A375 cells, respectively. In NIH 3T3			

cells, SCH79797 inhibits serum-stimulated activation of p44/p42 mitogen-activated protein kinases (MAPK) at low concentrations and induces apoptosis at higher concentrations ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
iring		
R in the		

CUSTOMER VALIDATION

• iScience. 2021 Oct 30;24(11):103386.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Ahn HS, et al. Inhibition of cellular action of thrombin by N3-cyclopropyl-7-[[4-(1-methylethyl)phenyl]methyl]-7H-pyrrolo[3, 2-f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem Pharmacol. 2000 Nov 15;60(10):1425-34.

[2]. Di Serio C, et al. Protease-activated receptor 1-selective antagonist SCH79797 inhibits cell proliferation and induces apoptosis by a protease-activated receptor 1-independent mechanism. Basic Clin Pharmacol Toxicol. 2007 Jul;101(1):63-9.

[3]. Sokolova E, et al. A novel therapeutic target in various lung diseases: airway proteases and protease-activated receptors. Pharmacol Ther. 2007 Jul;115(1):70-83.

[4]. Strande JL, et al. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol. 2007 Jul;102(4):350-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA