Proteins

Product Data Sheet

SBE13 Hydrochloride

Cat. No.: HY-15158 CAS No.: 1052532-15-6 Molecular Formula: $C_{24}H_{28}Cl_2N_2O_4$

Molecular Weight: 479.4

Target: Polo-like Kinase (PLK); Autophagy; Apoptosis Pathway: Cell Cycle/DNA Damage; Autophagy; Apoptosis

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro DMSO: ≥ 100 mg/mL (208.59 mM)

H₂O: 5 mg/mL (10.43 mM; Need ultrasonic)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0859 mL	10.4297 mL	20.8594 mL
	5 mM	0.4172 mL	2.0859 mL	4.1719 mL
	10 mM	0.2086 mL	1.0430 mL	2.0859 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.21 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.21 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.21 mM); Clear solution

BIOLOGICAL ACTIVITY

Description SBE13 Hydrochloride is a potent and selective Plk1 inhibitor, with an IC₅₀ of 200 pM; SBE13 Hydrochloride poorly inhibits

Plk2 (IC₅₀>66 μ M) or Plk3 (IC₅₀=875 nM).

IC₅₀ & Target PLK1 PLK3

> 875 nM (IC₅₀) 200 pM (IC₅₀)

SBE13 significantly reduce cell proliferation and induce apoptosis in HeLa cells, with an EC $_{50}$ of 18 μ M $^{[1]}$. SBE13 (1-100 μ M) In Vitro

shows no effect on Caspase 3/7 activity in NIH-3T3 cells. SBE13 (66 and 100 μ M) does not change morphology after treatment of primary cells. SBE13 (10 and 100 μ M) reduces pRb staining in primary cells, and this indicates a G0/G1 arrest^[2]. SBE13 (66 and 100 μ M) increases levels of cyclin B1, phospho histone H3, Wee1, Emi1 and securin, and results in cleavage of Cdc27 in HeLa cells. SBE13 (10 and 100 μ M) also induces apoptosis of HeLa cells^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [1]

To assay Plk1 kinase activity, cells are lysed after 13 h release in the presence of SBE13 after double thymidine block and kinase is immunoprecipitated from lysates using antibodies. In brief, for each immunoprecipitation 800 μ g of total protein are incubated with Plk1 antibody cocktail (1.5 μ g) for 2 h at 4°C on a rotator. Immunoprecipitated protein is collected using Protein A/G Agarose beads. Plk1 immunoprecipitates are incubated with casein (1 μ g) and with [γ -32P]ATP (1 μ Ci) for 30 min at 37°C in kinase buffer. Products from the kinase assays are fractionated on 10 % bis-tris-polyacrylamide gels, and phosphorylated substrate is visualized by autoradiography after an exposure of 12-36 h. Equal amounts of immunoprecipitates are subjected to Western blot analysis to confirm equal loading of Plk1 protein in kinase reactions^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Keppner S, et al. Identification and validation of a potent type II inhibitor of inactive polo-like kinase 1. ChemMedChem. 2009 Nov;4(11):1806-9.
- [2]. Keppner S, et al. Fate of primary cells at the G?/S boundary after polo-like kinase 1 inhibition by SBE13. Cell Cycle. 2011 Feb 15;10(4):708-20. Epub 2011 Feb 15.
- [3]. Keppner S, et al. Biological impact of freezing Plk1 in its inactive conformation in cancer cells. Cell Cycle. 2010 Feb 15;9(4):761-73. Epub 2010 Feb 16.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com