Product Data Sheet

SB 243213 dihydrochloride

 Cat. No.:
 HY-103112A

 CAS No.:
 1780372-25-9

 Molecular Formula:
 $C_{22}H_{21}Cl_2F_3N_4O_2$

Molecular Weight: 501.33

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description

SB 243213 dihydrochloride is an orally active, selective and high-affinity 5-HT_{2C} receptor antagonist with a pK_i of 9.37 and a pK_b of 9.8 for human 5-HT_{2C} receptor. SB 243213 dihydrochloride shows greater than a 100-fold selectivity over a wide range of neurotransmitter receptors, enzymes and ion channels. SB 243213 dihydrochloride has improved anxiolytic profile and has the potential for schizophrenia and motor disorders^[1].

IC.		

Human 5-HT _{2C} Receptor	human 5-HT _{1A} Receptor	human 5-HT _{1B} Receptor	human 5-HT _{1D} Receptor
9.37 (pKi)	<5.3 (pKi)	5.5 (pKi)	6.32 (pKi)
human 5-HT _{1E} Receptor <5.4 (pKi)	human 5-HT _{1F} Receptor	Human 5-HT _{2A} Receptor	human 5-HT _{2B} Receptor
	5.35 (pKi)	7.01 (pKi)	7.2 (pKi)
Human 5-HT ₆ Receptor 6.5 (pKi)	Human 5-HT ₇ Receptor 5.64 (pKi)		

In Vitro

SB 243213 dihydrochloride shows little affinity (p K_i <6) for cloned human 5-HT $_{1A}$, 5-HT $_{1B}$, 5-HT $_{1E}$, 5-HT $_{1F}$ and 5-HT $_{7}$ receptors. It shows weak affinity (p K_i <6.5) for the cloned human 5-HT $_{1D}$ and D3 receptors and moderate affinity (p K_i =6.7) for the cloned human D2 receptor^[1].

SB 243213 dihydrochloride shows 100-fold selectivity over a wide range of neurotransmitter receptors, enzymes and ion channels $^{[1]}$.

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

In Vivo

SB 243213 dihydrochloride (0.1-10 mg/kg; p.o.; 1 h pre-test) dose-dependently and significantly increases the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliar test box $^{[1]}$. SB 243213 dihydrochloride (0.3 mg/kg; p.o.; 1 h pre-test) significantly increases time spent in social interaction $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley experimentally naive rats (220-300 g) ^[1]
Dosage:	0.1, 0.3, 1, 3, 10 mg/kg
Administration:	p.o.; 1 hour pre-test
Result:	Dose-dependently and significantly increased the amount of time rats spent in social

intera	ction over 15 min under brightly lit conditions and in an unfamiliar test box

REFERENCES

[1]. Wood MD, et al. SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology. 2001 Aug;41(2):186-99.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com