SB 242084

Cat. No.:	HY-13409		
CAS No.:	181632-25-7	7	
Molecular Formula:	C ₂₁ H ₁₉ ClN ₄ O	2	
Molecular Weight:	394.85		
Target:	5-HT Recep	tor	
Pathway:	GPCR/G Pro	otein; Neu	uronal Signaling
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	2 years
		-20°C	1 year

SOLVENT & SOLUBILITY

In Vitro	DMSO : ≥ 44 mg/mL (1 * "≥" means soluble, ł	L11.43 mM) but saturation unknown.				
Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg		
	1 mM	2.5326 mL	12.6630 mL	25.3261 mL		
	5 mM	0.5065 mL	2.5326 mL	5.0652 mL		
	10 mM	0.2533 mL	1.2663 mL	2.5326 mL		
	Please refer to the solubility information to select the appropriate solvent.					
In Vivo	1. Add each solvent o Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 40% PEC g/mL (6.33 mM); Clear solution	G300 >> 5% Tween-8	0 >> 45% saline		
	2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.33 mM); Clear solution					

BIOLOGICAL ACTIV	
Description	SB 242084 is a selective, competitive and high-affinity (pK _i =9.0) 5-HT _{2C} receptor antagonist (crosses the blood-brain barrier). SB 242084 increases basal activity of dopaminergic neurons in the ventral tegmental area (VTA) of the midbrain and dopamine release in the vomeronasal nucleus. SB 242084 also increases mitochondrial gene expression and oxidative metabolism via 5-HT _{2A} receptor. SB 242084 has good research potential in the negative symptoms of anxiety, depression and schizophrenia, as well as in acute organ damage ^{[1][2][3]} .
IC ₅₀ & Target	5-HT _{2C} Receptor 9.0 (pKi)

CI

in vitro	SB 242084 (100 nM; 45 min) exhibits antagonism of the 5-HT stimulated increase in phosphatidylinositol hydrolysis at the human 5-HT _{2C} receptor in SH-SY5Y cells ^[1] . SB 242084 (1-100 Nm; 24 h) increases RPTC respiration and PGC-1α mRNA expression in RPTC ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[1]			
	Cell Line: SH-SY5Y cells			
	Concentration:	100 nM		
	Incubation Time:	45 min		
	Result:	Antagonized 5-HT induced concentration-related increase in PI hydrolysis.		
	RT-PCR ^[2]			
	Cell Line:	RPTC cells		
	Concentration:	1-100 nM		
	Incubation Time:	24 h		
	Result:	Increased FCCP-uncoupled respiration and PGC-1 α mRNA expression.		
In Vivo	SB 242084 (0.1-1 mg/kg; i.p.; SB 242084 (5 mg/kg; i.p.; sing SB 242084 (5, 10 mg/kg; i.p.; (DOPAC) in the nucleus accu SB 242084 (160-640 μg/kg; i.v	single; 20 min pre-test) improves the behavior of rats in social interaction tests ^[1] . gle; 20 min pre-test) improves mCPP-induced hypophagia in rats ^[1] . single) increases the levels of basal dialysate dopamine (DA) and dihydroxyphenylacetic acid mbens of rats ^[3] . v.; single) dose-dependently and significantly increases the basal firing rate of VTA (ventral		
	MCE has not independently of	confirmed the accuracy of these methods. They are for reference only.		
	MCE has not independently of Animal Model:	Male Sprague-Dawley (CD) rats ^[1] .		
	Animal Model:	Male Sprague-Dawley (CD) rats ^[1] .		
	Animal Model: Dosage: Administration:	Male Sprague-Dawley (CD) rats ^[1] . 0.1-1 mg/kg Intraperitoneal injection; single; 20 min pre-test		
	Animal Model: Dosage: Administration: Result:	Male Sprague-Dawley (CD) rats ^[1] . 0.1-1 mg/kg Intraperitoneal injection; single; 20 min pre-test Significantly increased the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliartest box.		
	Animal Model:	Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] .		
	Animal Model: Animal Model: Animal Model: Administration: Result: Animal Model: Dosage:	Male Sprague-Dawley (CD) rats ^[1] . Significantly increased the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliartest box. Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . 5 mg/kg		
	Animal Model: Animal Model: Animal Model: Administration: Result: Animal Model: Animal Model: Animal Model: Dosage: Administration:	Male Sprague-Dawley (CD) rats ^[1] . Significantly increased the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliartest box. Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . 5 mg/kg Intraperitoneal injection; single; 20 min pre-test		
	Animal Model: Animal Model: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Cosage: Cos	Intraperitoneal injection; single; 20 min pre-test Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . Significantly reduced the amount of food consumed by 23 h food-deprivedrats over a 1hr test period from the time of food presentation.		
	Animal Model: Animal Model: Animal Model: Administration: Result: Dosage: Administration: Result: Animal Model: Animal Model: Animal Model:	Intraperitoneal injection; single; 20 min pre-test Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . Sing/kg Intraperitoneal injection; single; 20 min pre-test Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . Sing/kg Intraperitoneal injection; single; 20 min pre-test Significantly reduced the amount of food consumed by 23 h food-deprivedrats over a 1hr test period from the time of food presentation.		
	Animal Model: Animal Model: Animal Model: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Animal Model: Dosage: Administration: Result: Animal Model: Animal Mod	In the same area, in vivo ¹⁻³¹ . Confirmed the accuracy of these methods. They are for reference only. Male Sprague-Dawley (CD) rats ^[1] . 0.1-1 mg/kg Intraperitoneal injection; single; 20 min pre-test Significantly increased the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliartest box. Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model) ^[1] . 5 mg/kg Intraperitoneal injection; single; 20 min pre-test Significantly reduced the amount of food consumed by 23 h food-deprivedrats over a 1hr test period from the time of food presentation. Rats ^[2] . 5, 10 mg/kg		
	Animal Model: Animal Model: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Dosage: Administration: Result: Animal Model: Dosage: Administration:	<pre>gc neurons, and the bursting activity is also enhanced in the same area, in vivo⁽⁻³⁾. confirmed the accuracy of these methods. They are for reference only. Male Sprague-Dawley (CD) rats^[1]. 0.1-1 mg/kg Intraperitoneal injection; single; 20 min pre-test Significantly increased the amount of time rats spent in social interaction over 15 min under brightly lit conditions and in an unfamiliartest box. Male Sprague-Dawley (CD) rats(mCPP-induced hypophagia model)^[1]. 5 mg/kg Intraperitoneal injection; single; 20 min pre-test Significantly reduced the amount of food consumed by 23 h food-deprivedrats over a 1hr test period from the time of food presentation. Rats^[2]. 5, 10 mg/kg Intraperitoneal injection; single</pre>		

Result:

Significantly increased basal dialysate dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens.

CUSTOMER VALIDATION

• Authorea. September 19, 2022.

See more customer validations on <u>www.MedChemExpress.com</u>

REFERENCES

[1]. Kennett GA, et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology. 1997 Apr-May;36(4-5):609-20.

[2]. Harmon JL, et al. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists. J Pharmacol Exp Ther. 2016 Apr;357(1):1-9.

[3]. Kennett GA, et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology. 1997 Apr-May;36(4-5):609-20.

Caution: Product has not been fully validated for medical applications. For research use only.