SB-200646

Cat. No.: HY-103129A CAS No.: 143797-63-1 Molecular Formula: $C_{15}H_{14}N_4O$ Molecular Weight: 266.3

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Result:

BIOLOGICAL ACTIVITY

Description	SB-200646 is the first selective 5-HT _{2B/2C} over 5-HT _{2A} receptor antagonist with pK _i values of 7.5, 6.9 and 5.2 for 5-HT _{2B} , 5-HT $_{2C}$ and 5-HT _{2A} , respectively. SB-200646 is orally active and has electrophysiological and anxiolytic properties in vivo ^{[1][2]} .				
IC ₅₀ & Target	5-HT _{2B} Receptor 7.5 (pKi)	5-HT _{2C} Receptor 6.9 (pKi)	5-HT _{2A} Receptor 5.2 (pKi)		
In Vitro	SB-200646A (4 μ M) abolishes the ethanol-induced increase in miniature inhibitory postsynaptic current (mIPSC) frequency and had no effect on basal mIPSC frequency ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	SB-200646A (20 mg/kg; intravenous injection; daily; for 21 days; male albino Sprague-Dawley rats) treatment significantly decreases the number of spontaneously active ventral tegmental area (VTA) dopaminergic neurons ^[1] . The i.v. administration of 4-16 mg/kg of SB-200646A significantly increases the firing rate and % events as bursts in spontaneously active VTA dopaminergic neurons and significantly increases the % events as burst in substantia nigra pars compacta (SNC) dopaminergic neurons ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	Male albino Sprague-Dawley ra at the time of the experiment) [[]	-Dawley rats (200-225 g at the beginning of treatment and 300-350 g periment) $^{\left[1\right]}$		
	Dosage:	20 mg/kg	ng/kg		
	Administration:	Intravenous injection; daily; for 21 days			

REFERENCES

[1]. Blackburn TP, et al. The acute and chronic administration of the 5-HT(2B/2C) receptor antagonist SB-200646A significantly alters the activity of spontaneously active midbrain dopamine neurons in the rat: An in vivo extracellular single cell study. Synapse, 2006 Jun 15;59(8):502-12.

dopaminergic neurons.

Significantly decreased the number of spontaneously active ventral tegmental area (VTA)

[2]. Kennett GA, et al. In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist. Br J Pharmacol. 1994 Mar;111(3):797-802.						
[3]. Theile JW, et al. Role of 5-hydroxytryptamine2C receptors in Ca2+-dependent ethanol potentiation of GABA release onto ventral tegmental area dopamine neurons. J Pharmacol Exp Ther. 2009 May;329(2):625-33.						
	Caution: Product has	not been fully validated for n	nedical applications. For research use o	nly.		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.c	om		
	Address:	1 Deer Park Dr, Suite Q, Monn	nouth Junction, NJ 08852, USA			

Page 2 of 2 www.MedChemExpress.com