Rosiglitazone maleate

Cat. No.:	HY-14600	
CAS No.:	155141-29-0	s s
Molecular Formula:	$C_{22}H_{23}N_{3}O_{7}S$	
Molecular Weight:	474	орн он
Target:	PPAR; TRP Channel; Autophagy; Autophagy; Ferroptosis	O O
Pathway:	Cell Cycle/DNA Damage; Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor; Membrane Transporter/Ion Channel; Neuronal Signaling; Autophagy; Apoptosis	ч тон О
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

Preparing Stock Solutions		Solvent Mass Concentration	1 mg	5 mg	10 mg	
	1 mM	2.1097 mL	10.5485 mL	21.0970 mL		
		5 mM	0.4219 mL	2.1097 mL	4.2194 mL	
		10 mM	0.2110 mL	1.0549 mL	2.1097 mL	
	Please refer to the so	lubility information to select the app	propriate solvent.	1		
In Vivo		1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.27 mM); Clear solution				
		2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.27 mM); Clear solution				
		3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.27 mM); Clear solution				

BIOLOGICAL ACTIVITY		
Description	PPARy1, PPARy2, and PPARy,	9653C) is a potent and selective activator of PPARy, with EC ₅₀ s of 30 nM, 100 nM and 60 nM for respectively, and a K _d of appr 40 nM for PPARy; Rosiglitazone maleate is also an modulator of elastatin 2 (TRPM2), TRPM3 and activates TRP canonical 5 (TRPC5).
IC₅₀ & Target	ΡΡΑRγ1 30 nM (EC50)	PPARγ2 100 nM (EC50)

Product Data Sheet

In Vitro	Rosiglitazone maleate is a potent and selective activator of PPARy, with EC_{50} s of 30 nM and 100 nM for PPARy1 and PPARy2, respectively, and a K _d of appr 40 nM for PPARy. Rosiglitazone (BRL49653, 0.1, 1,10 µM) promotes differentiation of C3H10T1/2 stem cells to adipocytes ^[1] . Rosiglitazone (Compound 6) activates PPARy, with an EC_{50} of 60 nM ^[2] . Rosiglitazone (1 µM) activates PPARy, which binds to NF- α 1 promoter to activate gene transcription in neurons. Rosiglitazone (1 µM) also protects Neuro2A cells and hippocampal neurons against oxidative stress, and up-regulates BCL-2 expression in an NF- α 1-dependent manner ^[3] . Rosiglitazone completely inhibits TRPM3 with IC ₅₀ values of 9.5 and 4.6 µM against nifedipine- and PregS-evoked activity, but such effects are not via PPARy. Rosiglitazone inhibits TRPM2 at higher concentration, with an IC ₅₀ of appr 22.5 µM. Rosiglitazone is a strong stimulator of TRPC5 channels, with an EC ₅₀ of -30 µM ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Rosiglitazone (5 mg/kg, p.o.) decreases the serum glucose in diabetic rats. Rosiglitazone also decreases IL-6, TNF-α, and VCAM-1 levels in diabetic group. Rosiglitazone in combination with losartan increases glucose compared to diabetic and Los-treated groups. Rosiglitazone significantly ameliorates endothelial dysfunction indicated by a significantly lower contractile response to PE and Ang II and enhancement of ACh-provoked relaxation in aortas isolated from diabetic rats ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay ^[1]	cDNA encoding amino acids 174-475 of PPARy1 is amplified via polymerase chain reaction and inserted into bacterial expression vector pGEX-2T. GST-PPARy LBD is expressed in BL21(DE3)plysS cells and extracts. For saturation binding analysis, bacterial extracts (100 µg of protein) are incubated at 4°C for 3 h in buffer containing 10 mM Tris (pH 8.0), 50 mM KCl, 10 mM dithiothreitol with [³ H]-BRL49653 (specific activity, 40 Ci/mmol) in the presence or absence of unlabeled Rosiglitazone. Bound is separated from free radioactivity by elution through 1-mL Sephadex G-25 desalting columns. Bound radioactivity eluted in the column void volume and is quantitated by liquid scintillation counting ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Cell Assay ^[1]	C3H10T1/2 cells are grown in a 24-well plate in DME medium supplemented with 10% fetal calf serum. Medium and compound (Rosiglitazone) are exchanged every 3 days. Cells are stained at day 7 with Oil Red O and photographed ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal Administration ^[2]	Rats are intravenously injected with 38 mg/kg streptozotocin and after 48 h, diabetes is identified by urinary glucosuria and then random blood sugar is measured and this day is regarded as day 0. Animals with a serum glucose level of 220-300 mg/dL are selected to be used in this study. Rats are randomly separated into five groups for daily drug administration for 8 weeks: group 1: control nondiabetic rats given a vehicle only (0.5 mL/kg of 0.5% carboxy methyl celleluse orally), group 2: control diabetic rats given a vehicle, group 3: diabetic rats receiving Rosiglitazone (5 mg/kg orally), group 4: diabetic rats receiving losartan (2 mg/kg, orally), and group 5: diabetic rats receiving both Rosiglitazone and losartan ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Circulation. 2022 Nov 30.
- Cell Metab. 2023 Dec 5;35(12):2165-2182.e7.
- Cell Metab. 2023 Sep 7;S1550-4131(23)00304-2.
- Cell Metab. 2021 Mar 2;33(3):581-597.e9.
- Nat Commun. 2023 Jun 2;14(1):3208.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Lehmann JM, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953-6.

[2]. Willson TM, et al. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996 Feb 2;39(3):665-8.

[3]. Thouennon E, et al. Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. J Neurochem. 2015 Aug;134(3):463-70.

[4]. Majeed Y, et al. Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol. 2011 Jun;79(6):1023-30.

[5]. Ateyya H, et al. Beneficial effects of rosiglitazone and losartan combination in diabetic rats. Can J Physiol Pharmacol. 2018 Mar;96(3):215-220.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA