

Product Data Sheet

Ro 5212773

Molecular Weight:

Cat. No.: HY-110098

CAS No.: 1110781-88-8

Molecular Formula: $C_{20}H_{21}F_{3}N_{2}O_{2}$

Target: Trace Amine-associated Receptor (TAAR)

Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

In solvent

378.39

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (264.28 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6428 mL	13.2139 mL	26.4278 mL
	5 mM	0.5286 mL	2.6428 mL	5.2856 mL
	10 mM	0.2643 mL	1.3214 mL	2.6428 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.61 mM); Clear solution

BIOLOGICAL ACTIVITY

DescriptionRo 5212773 (EPPTB) is a potent and selective trace amine-associated receptor 1 (TAAR1) antagonist (K_i=0.9 nM for mouse

TAAR1), with no significant effects on other TAARs. TAAR1 is a G protein-coupled receptor (GPCR) that is nonselectively

activated by endogenous metabolites of amino acids^{[1][2]}.

In Vitro Ro 5212773 (EPPTB) suppresses the excitability of hippocampal pyramidal neurons. EPPTB also reduceds seizure-like events

(SLEs) and seizure activity^[1].

Ro 5212773 blocks the TAAR1-mediated activation of an inwardly rectifying K⁺ current^[2].

Ro 5212773 potently antagonizes cAMP production induced by activating mouse TAAR1 with 1.5 μ M β -phenylethylamine (IC $_{50}$ =27.5 nM). cAMP levels are dose-dependently reduced by Ro 5212773 in HEK293 cells in the absence of TAAR1 agonist (IC $_{50}$ = 19 nM). EPPTB is significantly more potent in antagonizing cAMP production by mouse, as compared to rat (IC $_{50}$ = 4539 nM)

and human (IC_{50} = 7487 nM) TAAR1^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Bradaia A, et al. The sele U S A. 2009;106(47):2008		s TAAR1-mediated regulatory m	echanisms in dopaminergic neur	rons of the mesolimbic system. Proc Na	atl Aca
			nedical applications. For rese		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909		mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChe	mExpress.com	

Page 2 of 2 www.MedChemExpress.com