Proteins

Rifaximin

Cat. No.: HY-13234 CAS No.: 80621-81-4 Molecular Formula: $C_{43}H_{51}N_3O_{11}$ Molecular Weight: 785.88

Target: Bacterial; Antibiotic; DNA/RNA Synthesis Pathway: Anti-infection; Cell Cycle/DNA Damage

Powder -20°C Storage:

3 years 2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 50 \text{ mg/mL} (63.62 \text{ mM})$

* "≥" means soluble, but saturation unknown.

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	1.2725 mL	6.3623 mL	12.7246 mL
	5 mM	0.2545 mL	1.2725 mL	2.5449 mL
	10 mM	0.1272 mL	0.6362 mL	1.2725 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 3 mg/mL (3.82 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 3 mg/mL (3.82 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.08 mg/mL (2.65 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Rifaximin, a gastrointestinal-selective antibiotic, binds the β-subunit of bacterial DNA-dependent RNA polymerase, resulting in inhibition of bacterial RNA synthesis. Rifaximin susceptibility is higher against Gram-positive strains (MIC: 0.03-5 mg/ml) compared to Gram-negative bacteria (MIC: 8-50 mg/mL)^{[1][2]}.

In Vitro

Rifaximin has a good inhibitory activity against Staphylococcus, Streptococcus, Enterococcus, Escherichia coli, Shigella, Salmonella, Bacillus cereus, Moraxella catarrhalis, Haemophilus influenzae, Haemophilus ducreyi, Bacteroides biviusRifaximin (0.1, 1.0 and 10.0 μ M) causes significant and concentration-dependent reduction of cell proliferation, cell migration and PCNA expression in the Caco-2 cells vs. untreated cells^[2].

Rifaximin (0.1-10 μ M) downregulates Akt/mTOR and p38MAPK/NF- κ B pathways through a PXR-dependent mechanism^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[2]

Cell Line:	Caco-2 cells	
Concentration:	0.1, 1.0 and 10.0 μM	
Incubation Time:	48 hours	
Result:	Caused a significant and concentration-dependent reduction in cell proliferation. Reduce the expression of PCNA in a concentration-dependent manner.	

Western Blot Analysis^[2]

Cell Line:	Caco-2 cells	
Concentration:	0.1, 1.0 and 10.0 μM	
Incubation Time:	24 hours	
Result:	Reduced Akt, mTOR, p38 MAPK and HIF-1α expression in a concentration-dependent manner.Inhibited NF-κB nuclear activation and p70S6K.	

In Vivo

Rifaximin administration (30 or 50 mg/kg/day) increases survival rates of colitic mice and reduces colitis severity by improvement of wasting syndrome, histologic scores, decrease in colon IL-2, IL-12, IFN-gamma and TNF-alpha (protein and mRNA) levels, and diminishes colon myeloperoxidase (MPO) activity^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Balb/c mice (6–8 weeks old) bearing 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis ^[3]	
Dosage:	10, 30 and 50 mg/kg/day	
Administration:	Orally, p.o. daily for 7 days	
Result:	Significantly reduced TNBS induced colitis at the dose of 30 and 50 mg/kg, but not 10 mg/kg. A 7-day course of 30 and 50 mg/kg resulted in an almost complete tissue protection.	

CUSTOMER VALIDATION

• Mol Pharm. 2022 Oct 21.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Veronica Ojetti, et al. Rifaximin pharmacology and clinical implications. Expert Opin Drug Metab Toxicol. 2009 Jun;5(6):675-82.
- [2]. Giuseppe Esposito, et al. Rifaximin, a non-absorbable antibiotic, inhibits the release of pro-angiogenic mediators in colon cancer cells through a pregnane X receptor-dependent pathway. Int J Oncol. 2016 Aug;49(2):639-45.
- [3]. Stefano Fiorucci, et al. Inhibition of intestinal bacterial translocation with rifaximin modulates lamina propria monocytic cells reactivity and protects against inflammation in a rodent model of colitis. Digestion. 2002;66(4):246-56.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com