Retinoic acid

Cat. No.: CAS No.: Molecular Formula: Molecular Weight:	HY-14649 302-79-4 C ₂₀ H ₂₈ O ₂ 300.44	
Target: Pathway:	300.44 RAR/RXR; PPAR; Endogenous Metabolite; Autophagy; Organoid Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor; Cell Cycle/DNA Damage; Autophagy; Stem Cell/Wnt	ОН
Storage:	-20°C, sealed storage, away from moisture and light * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light)	

SOLVENT & SOLUBILITY

		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	3.3285 mL	16.6423 mL	33.2845 mL		
		5 mM	0.6657 mL	3.3285 mL	6.6569 mL		
		10 mM	0.3328 mL	1.6642 mL	3.3285 mL		
	Please refer to the solubility information to select the appropriate solvent.						
	2. Add each solvent	Solubility: 5 mg/mL (16.64 mM); Suspended solution; Need ultrasonic and warming and heat to 40°C 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (8.32 mM); Suspended solution; Need ultrasonic and warming 3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.32 mM); Suspended solution 4. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.32 mM); Clear solution 5. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline					
	Solubility: ≥ 2.5 m 4. Add each solvent Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 90% (20 g/mL (8.32 mM); Suspended solution one by one: 10% DMSO >> 90% corr g/mL (8.32 mM); Clear solution	% SBE-β-CD in saline) n n oil				
	Solubility: ≥ 2.5 m 4. Add each solvent Solubility: ≥ 2.5 m 5. Add each solvent	one by one: 10% DMSO >> 90% (20 g/mL (8.32 mM); Suspended solution one by one: 10% DMSO >> 90% corr g/mL (8.32 mM); Clear solution	% SBE-β-CD in saline) n n oil 300 >> 5% Tween-80				

BIOLOGICAL ACTIVITY

Description

Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis.

Product Data Sheet

	Retinoic acid is a natural agonist of RAR nuclear receptors, with IC ₅₀ s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with K _d of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.					
IC₅o & Target	ΡΡΑRβ/δ 17 nM (Kd)	PPARα 103 nM (Kd)	PPARγ 178 nM (Kd)	Human Endogenous Metabolite		
	ΡΡΑRα 14 nM (IC ₅₀)	ΡΡΑRγ 14 nM (IC ₅₀)	RARβ 14 nM (IC ₅₀)			
In Vitro	Retinoic acid (All-trans-retinoic acid, ATRA) is a highly potent derivative of vitamin A that is required for virtually all essential physiological processes and functions because of its involvement in transcriptional regulation of over 530 different genes. Retinoic acid exerts its actions by serving as an activating ligand of nuclear retinoic acid receptors (RAR α - γ), which form heterodimers with retinoid X receptors (RXR α - γ) ^[1] . Retinoic acid (RA) bound to PPAR α and PPAR γ with a low affinity demonstrated by K _d values of 100-200 nM. In contrast, Retinoic acid associates with PPAR β / δ with a K _d of 17 nM, revealing both high affinity and isotype selectivity ^[2] . Undifferentiated P19 cells express the Retinoic acid (RA) receptors RAR α , RAR β , RAR γ , and PPAR β / δ , as well as the Retinoic acid -binding proteins CRABP-II and FABP5. Induction of differentiation by treatment of cells with Retinoic acid results in transient up-regulation of CRABP-II and down-regulation of FABP5 that are observed at the level of both the respective proteins and mRNAs. Following the initial decrease, the level of both FABP5 protein and mRNA increases to attain a 2-2.5-fold higher level in mature neurons as compared with undifferentiated P19 cells. Induction of differentiation does not markedly affect the levels of either RAR α or PPAR β / δ . The level of RAR γ mRNA decreases by about 5-fold by day 4 and remained low in mature neurons ^[3] . Retinoic acid receptor (RAR) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The Retinoic acid interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					

PROTOCOL

 Cell Assay ^[3]
 P19 cell are induced to undergo neuronal differentiation according to established procedures. Briefly, cells are cultured on 1% agarose-coated 10 cm dishes at 3×10 ⁵ cells/mL in α-minimal essential medium supplemented with 10% FBS.

 Differentiation is induced by addition of Retinoic acid (1 µM) and medium containing Retinoic acid replaced 2 days later. On day 4, cell aggregates are collected by centrifugation, separated to single cells by trypsin/EDTA treatment, replated onto poly-L-lysine-coated plates, and cultured in α-minimal essential medium supplemented with 10% FBS. On day 6, medium is replaced with neurobasal medium containing B27 supplement and 2 mM GlutaMAX. Medium is replaced every 2 days for an additional week^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Res. 2022 Jun;32(6):513-529.
- Blood. 2022 Aug 19;blood.2022015668.
- Nat Commun. 2024 Jan 17;15(1):584.
- Adv Sci (Weinh). 2022 Aug 28;e2203173.
- Adv Sci (Weinh). 2022 Jan 22;e2105568.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Wu L, et al. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One. 2016 Apr 14;11(4):e0153556.

[2]. Shaw N, et al. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem. 2003 Oct 24;278(43):41589-92.

[3]. Yu S, et al. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisomeproliferator-activated receptor β/δ (PPARβ/δ). J Biol Chem. 2012 Dec 7;287(50):42195-205.

[4]. Kam RK, et al. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2012 Mar 22;2(1):11.

[5]. Apfel C, et al. A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7129-33.

[6]. Xiu Jun Wang, et al. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19589-94.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA