

Product Data Sheet

RWJ-56110

 Cat. No.:
 HY-108556

 CAS No.:
 252889-88-6

 Molecular Formula:
 $C_{41}H_{43}Cl_2F_2N_7O_3$

Molecular Weight: 790.73

Target: Protease Activated Receptor (PAR); Apoptosis

Pathway: GPCR/G Protein; Apoptosis

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

RWJ-56110 is a potent, selective, peptide-mimetic inhibitor of PAR-1 activation and internalization (binding IC $_{50}$ =0.44 uM) and shows no effect on PAR-2, PAR-3, or PAR-4. RWJ-56110 inhibits the aggregation of human platelets induced by both SFLLRN-NH2 (IC $_{50}$ =0.16 μ M) and thrombin (IC $_{50}$ =0.34 μ M), quite selective relative to U46619 (HY-108566). RWJ-56110 inhibits angiogenesis and blocks the formation of new vessels in vivo. RWJ-56110 induces cell apoptosis [1][2].

IC₅₀ & Target

PAR1

In Vitro

Proteinase-activated receptors (PARs) are a family of G protein-coupled receptors activated by the proteolytic cleavage of their N-terminal extracellular domain, exposing a new amino terminal sequence that functions as a tethered ligand to activate the receptors.

RWJ56110 inhibits the aggregation of human platelets induced by both SFLLRN-NH2 (IC₅₀=0.16 μ M) and thrombin (IC₅₀=0.34 μ M) while being quite selective relative to collagen and the thromboxane mimetic U46619 (HY-108566)^[1].

RWJ-56110 is fully inhibits thrombin-induced RASMC proliferation with an IC $_{50}$ value of 3.5 μ M. RWJ-56110 shows blockade of thrombin's action with RASMC calcium mobilization (IC $_{50}$ =0.12 μ M), as well as with HMVEC (IC $_{50}$ =0.13 μ M) and HASMC calcium mobilization (IC $_{50}$ =0.17 μ M) $^{[1]}$.

RWJ56110 (0.1-10 μ M; 24-96 hours) inhibits endothelial cell growth dose-dependently, with half-maximal inhibitory concentration of RWJ56110 is approximately 10 μ M^[2].

RWJ56110 (0.1-10 μ M; 6 hours) inhibits DNA synthesis of endothelial cells in a thymidine incorporation assays. Endothelial cells are in fast-growing state (50-60% confluence), RWJ56110 inhibits cell DNA synthesis in a dose-dependent manner, but when cells that are in the quiescent state (100% confluent), the inhibitory effect of PAR-1 antagonists is much less pronounced^[2].

RWJ56110 (0.1-10 μ M; pretreatment for 15 min) inhibits thrombin-induced Erk1/2 activation in a concentration-dependent manner. However, when endothelial cells are stimulated by FBS (final concentration 4%), it reduces partially the activated levels of Erk1/2^[2].

RWJ56110 (30 μ M; 24 hours) has an inhibitory effect on endothelial cell cycle progression. It reduces the percentage of cells in the S phase, while alterations in the percentages of G1 and G2/M cells are less pronounced^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[2]

Cell Line:	Endothelial cells
Concentration:	0 μΜ; 3 μΜ; 1 μΜ; 3 μΜ; 10 μΜ

Incubation Time:	Pretreatment for 15 min
Result:	Resulted in MAPK activation in Endothelial cells.
Cell Cycle Analysis ^[2]	
Cell Line:	Endothelial cells
Concentration:	0 μΜ; 3 μΜ; 1 μΜ; 3 μΜ; 10 μΜ
Incubation Time:	Pretreatment for 15 min
Result:	Reduced cell number in S phase.

REFERENCES

[1]. Andrade-Gordon, et al.Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. oc Natl Acad Sci U S A. 1999 Oct 26;96(22):12257-62.

[2]. Panagiota Zania, et al. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. J Pharmacol Exp Ther. 2006 Jul;318(1):246-54.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA