Product Data Sheet

(RS)-(Tetrazol-5-yl)glycine

Cat. No.: HY-100839 CAS No.: 138199-51-6 Molecular Formula: $C_3H_5N_5O_2$ Molecular Weight: 143.1

Target: iGluR Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

$$N=N$$
 O N N N N N

BIOLOGICAL ACTIVITY

Description	(RS)-(Tetrazol-5-yl)glycine (D,L-(tetrazol-5-yl)glycine) is a highly potent and selective N-methyl-D-aspartate (NMDA) receptor agonist ^[1] . (RS)-(Tetrazol-5-yl)glycine has EC ₅₀ s of 99 nM, 1.7 μ M for GluN1/GluN2D and GluN1/GluN2A, respectively ^[2] . (RS)-(Tetrazol-5-yl)glycine induces seizure responses and Fos in mice ^[3] .					
IC ₅₀ & Target	NMDA Receptor	NMDA Receptor				
In Vitro	amino acid receptor. (R using [³ H]CGS19755 (IC (RS)-(Tetrazol-5-yl)glyc methylisoxazole-4-prop	(RS)-(Tetrazol-5-yl)glycine (D,L-(tetrazol-5-yl)glycine) is a agonist of N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptor. (RS)-(Tetrazol-5-yl)glycine displaces NMDA receptor binding to rat brain membranes as measured using [3 H]CGS19755 (IC $_{50}$ =98 nM) and [3 H]glutamate (IC $_{50}$ =36 nM) as ligands ^[1] . (RS)-(Tetrazol-5-yl)glycine does not appreciably inhibit the binding of D,L-alpha-[5-methyl-3H] amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), [3 H]kainate, or [3 H]glycine (IC $_{50}$ s>30 μ M)[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	(RS)-(Tetrazol-5-yl)glycine can be used in animal modeling to construct epilepsy models. (RS)-(Tetrazol-5-yl)glycine (D,L-(tetrazol-5-yl)glycine; 1.25, 1.5 mg/kg; IP) induces seizure responses and Fos in the NR1+/+ and NR1-/- mice ^[3] . (RS)-(Tetrazol-5-yl)glycine is a highly potent convulsant when given to neonatal rats (ED ₅₀ =0.071 mg/kg; i.p.) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
	Animal Model:	C57BL/6 mice ^[3]				
	Dosage:	1.25, 1.5 mg/kg				
	Administration:	IP				
	Result:	Induced seizure responses and Fos.				

REFERENCES

[1]. Schoepp DD, et al. D,L-(tetrazol-5-yl) glycine: a novel and highly potent NMDA receptor agonist. Eur J Pharmacol. 1991 Oct 15;203(2):237-43.

[2]. Vance KM, et al. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun. 2011;2:294. [3]. Duncan GE, et al. Seizure responses and induction of Fos by the NMDA agonist (tetrazol-5-yl)glycine in a genetic model of NMDA receptor hypofunction. Brain Res. 2008 Jul 24;1221:41-8.							
	Caution: Product has not been fully validated for medical applications. For research use only.						
Tel:		Fax: 609-228-5909 Park Dr, Suite Q, Monmouth	E-mail: tech@MedChemExpress.com				
	7.44.7000, 2 2 000.						

Page 2 of 2 www.MedChemExpress.com