(R)-ZINC-3573

Cat. No.:	HY-118069						
CAS No.:	2089389-15-9						
Molecular Formula:	C ₁₈ H ₂₁ N ₅						
Molecular Weight:	307.39						
Target:	Mas-related G-protein-coupled Receptor (MRGPR)						
Pathway:	GPCR/G Protein						
Storage:	Powder	-20°C	3 years				
		4°C	2 years				
	In solvent	-80°C	6 months				
		-20°C	1 month				

SOLVENT & SOLUBILITY

Pr		Mass Solvent Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	3.2532 mL 16.2660 mL		32.5320 mL	
		5 mM	0.6506 mL	3.2532 mL	6.5064 mL	
		10 mM	0.3253 mL	1.6266 mL	3.2532 mL	
	Please refer to the so	lubility information to select the app	propriate solvent.			

DEGGICALIACTIVITT													
escription (R)-z	≀)-ZIN INC-3	C-35 573 c	C-3573 is a selectiv 573 can be used as	C-3573 is a selective Mas-relate 573 can be used as a MRGPRX2	C-3573 is a selective Mas-related G proteir 573 can be used as a MRGPRX2 probe for t	C-3573 is a selective Mas-related G protein-coupled 573 can be used as a MRGPRX2 probe for the researc	C-3573 is a selective Mas-related G protein-coupled receptor X 573 can be used as a MRGPRX2 probe for the research of pain a	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGP 573 can be used as a MRGPRX2 probe for the research of pain and itch ^{[:}	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGPRX2) agor 573 can be used as a MRGPRX2 probe for the research of pain and itch ^[1] .	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGPRX2) agonist with a 573 can be used as a MRGPRX2 probe for the research of pain and itch ^[1] .	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGPRX2) agonist with an EC ₅₀ v 573 can be used as a MRGPRX2 probe for the research of pain and itch ^[1] .	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGPRX2) agonist with an EC ₅₀ value of 74 573 can be used as a MRGPRX2 probe for the research of pain and itch ^[1] .	C-3573 is a selective Mas-related G protein-coupled receptor X2 (MRGPRX2) agonist with an EC ₅₀ value of 740 nM. (573 can be used as a MRGPRX2 probe for the research of pain and itch ^[1] .
Vitro (R)-2	₹)-ZIN AD2 m	C-35	C-3573 (0.001 nM-1 past cells ^[1] .	C-3573 (0.001 nM-100 μM) pron	C-3573 (0.001 nM-100 μM) promotes β-hex nast cells ^[1] .	C-3573 (0.001 nM-100 μM) promotes β-hexosaminid	C-3573 (0.001 nM-100 μM) promotes β-hexosaminidase degra	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation last cells ^[1] .	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation and induction and the set cells [1].	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation and induces intrac	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation and induces intracellular canast cells ^[1] .	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation and induces intracellular calcium relevant cells ^[1] .	C-3573 (0.001 nM-100 μ M) promotes β -hexosaminidase degranulation and induces intracellular calcium release in
LAD: MCE	AD2 mast concerning the AD2 ma	cells ^[1] . t indepei	ndent	ndently confirmed	ndently confirmed the accura	ndently confirmed the accuracy of thes	ndently confirmed the accuracy of these method	ndently confirmed the accuracy of these methods. They a	ndently confirmed the accuracy of these methods. They are for refe	ndently confirmed the accuracy of these methods. They are for reference on	ndently confirmed the accuracy of these methods. They are for reference only.	ndently confirmed the accuracy of these methods. They are for reference only.	ndently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lansu K, et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat Chem Biol. 2017 May;13(5):529-536.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA