Proteins

Product Data Sheet

(R)-ADX-47273

Cat. No.: HY-13058B CAS No.: 851881-59-9 Molecular Formula: $C_{20}H_{17}F_{2}N_{3}O_{2}$ Molecular Weight: 369.36 Target: mGluR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder -20°C

3 years 4°C 2 years

In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (270.74 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.7074 mL	13.5369 mL	27.0739 mL
otock octations	5 mM	0.5415 mL	2.7074 mL	5.4148 mL
	10 mM	0.2707 mL	1.3537 mL	2.7074 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 - Solubility: ≥ 2.5 mg/mL (6.77 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.77 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	(R)-ADX-47273 is a potent mGluR5 positive allosteric modulator, with an EC $_{50}$ of 168 nM for potentiation .
IC ₅₀ & Target	mGlu ₅ 168 nM (EC50)
In Vitro	(R)-ADX-47273 (ADX-47273 (5)) is a potent mGluR5 positive allosteric modulator with an EC $_{50}$ for potentiation of 168 nM and a 9-fold shift of the glutamate response curve at 1 μ M $^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Engers DW, et al. Synthesis, SAR and unanticipated pharmacological profiles of analogues of the miGluRS ago potentiator ADX. 47273. ChemMedChem. 2009 07;4(4):505-11. Caution: Product has not been fully validated for medical applications. For research use only. Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr., Suite Q., Monmouth Junction, NJ 08852, USA
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Page 2 of 2 www.MedChemExpress.com